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ABSTRACT

Database administrators (DBAs) were traditionally responsible for
optimizing the on-premise database workloads. However, with the
rise of cloud data services, where cloud providers offer fully man-
aged data processing capabilities, the role of a DBA is completely
missing. At the same time, optimizing query workloads is becom-
ing increasingly important for reducing the total costs of operation
and making data processing economically viable in the cloud. This
paper revisits workload optimization in the context of these emerg-
ing cloud-based data services. We observe that the missing DBA
in these newer data services has affected both the end users and
the system developers: users have workload optimization as a ma-
jor pain point while the system developers are now tasked with
supporting a large base of cloud users.

We present PEREGRINE, a workload optimization platform for
cloud query engines that we have been developing for the big data
analytics infrastructure at Microsoft. PEREGRINE makes three major
contributions: (i) a novel way of representing query workloads that
is agnostic to the query engine and is general enough to describe
a large variety of workloads, (ii) a categorization of the typical
workload patterns, derived from production workloads at Microsoft,
and the corresponding workload optimizations possible in each
category, and (iii) a prescription for adding workload-awareness
to a query engine, via the notion of query annotations that are
served to the query engine at compile time. We discuss a case study
of PEREGRINE using two optimizations over two query engines,
namely ScoPE and Spark. PEREGRINE has helped cut the time to
develop new workload optimization features from years to months,
benefiting the research teams, the product teams, and the customers
at Microsoft.
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1 INTRODUCTION

Database administrators (DBAs) have long carried the burden of
managing database systems. They are the indispensable resources
for installing, maintaining, and tuning the database systems of an
organization, with business relying on them for their critical opera-
tions. Traditional DBAs were domain experts who relied on their
experience and best practices to manage the databases. However,
vendors and practitioners soon realized the effort and costs asso-
ciated with manual database administration. This led to the rise
of auto-admin tools [22, 26, 28, 29], consisting of algorithms and
wizards, to assist in database administration. Auto-admins were
client-side tools that used heuristics and other estimates for the
tuning decisions, and often involved human DBAs in the loop.

While DBA has primarily been a concern for the database cus-
tomers, the rapid rise of cloud infrastructures has turned the tables.
Databases are now increasingly offered as fully managed services
in the cloud, also referred to as data services, e.g., Athena [24],
BigQuery [25], and ADLA [5], where users simply point to their
data and start querying immediately. This is desirable for both
the customers and the cloud providers, since the customers are no
longer responsible for database installation and maintenance, while
the cloud providers can continuously improve the upgrade and
tooling experience. Figure 1 contrasts the traditional on-premise
databases with the new cloud data services. While the on-premise
databases relied heavily on the presence of DBAs to manage and
tune databases, unfortunately, the role of a DBA for performance
tuning is completely missing in the cloud data services. At the same
time, tuning end to end workloads, aka workload optimization, is
crucial in the cloud environments for reducing the total cost of
operations. Lack of a DBA coupled with a lack of user-control in
the cloud data services, has caused workload optimization to be a
major challenge in these data services.

Interestingly, the cloud data services also open up several new
opportunities. First of all, the popularity and ease of cloud services
have increased the workload traces available to the cloud provider?.
This opens up a huge opportunity to leverage these workloads
for performance tuning. Second, the cloud providers can not only
analyze the massive query workloads, but they can also apply a
feedback loop to their managed data services, since the services
are under their control anyways. Such self-tuning mechanisms are
needed to not only improve customer experience but to also make
the life of system developers easier. Third, it is often hard to get
the performance tunings right in the first shot and so the cloud
provider can try different things or even learn the best tunings
across multiple customers, all in one central place. Fourth, given
the fast pace of releases and updates in the cloud services, the
cloud provider can provide newer performance tunings in a shorter
turnaround time. Finally, all major cloud providers offer multiple

! These workloads could be anonymized traces, or the logs could be accessed only
within privacy boundaries of the customer.
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Figure 1: Comparing on-premise with cloud data services; observation: the role of a DBA for performance tuning is missing

in the cloud data services.

query engines and the need for analyzing query workloads and
applying feedback actions is common across all of them. Thus,
there is an opportunity to build a common platform that could be
leveraged across multiple cloud query engines.

Contributions. Motivated by the above observations, in this
paper, we present PEREGRINE, a workload optimization platform
for cloud query engines. The goal of PEREGRINE is to: (i) make it
easy to analyze query workloads and build workload optimization
features (or apps) using them, (ii) define the space of workloads
optimizations that is relevant to typical production workloads, and
(iii) provide design patterns to add workload awareness to the cloud
query engines. In summary, our key contributions are as follows:

(1) We illustrate the problem of a missing DBA from the Big Data
analytics infrastructure at Microsoft. We describe the need for work-
load optimization from our customer experiences and discuss the
implications of not having a DBA function in cloud data services.
(Section 2)

(2) We present PEREGRINE, a platform that provides dba-as-a-service
to fill the workload optimization gap in cloud data services, an
engine-agnostic workload optimization layer that can be developed
and scaled independently, and a global optimization framework to
help cloud users reduce their total costs of operations. (Section 3)

(3) We introduce a novel way of representing query workloads
that is agnostic to the specific query language and general enough
to describe a large variety of workloads. A workload thus described
can generate intermediate representations (IRs) that can be used for
quickly building workload optimization features later on. (Section 4)

(4) We present a categorization of the typical workload patterns,
derived from production workloads at Microsoft, and discuss their
corresponding workload optimizations possible in each category,
thus providing a good starting point to researchers and practitioners
for building workload optimization applications. (Section 5)

(5) We describe providing workload feedback to the query engines,
via the notion of query annotations. We discuss how the query
annotations are served from a feedback service and how the query
engines are enabled to act on the workload feedback. Together,
these add workload awareness to a query engine. (Section 6)

(6) We present a detailed case study on how PEREGRINE helped
in (i) building multiple workload optimizations, namely Cloud-
Views [41] and CardLearner [64], for the SCOPE query engine, and
(ii) building the CloudViews optimization for multiple query en-
gines, namely ScoPE [67] and Spark. (Section 7)

(7) Finally, we discuss the road ahead for PEREGRINE, particularly
in terms of extending it along various dimensions, including more
optimizations and query engines, and improving the end to end
deployment experience. (Section 8)

2 THE MISSING DBA IN THE CLOUD

We now illustrate the problem of missing DBA using the big data
analytics infrastructure at Microsoft, which is used across the whole
of Microsoft for business units such as Bing, Office, Windows, Xbox,
Skype, etc. Microsoft’s big data infrastructure consists of hundreds
of thousands of machines and uses ScopE as the primary query en-
gine. The ScopE job service processes hundreds of thousands of an-
alytical jobs authored by thousands of developers across Microsoft.
These jobs process massive volumes of data, several exabytes in to-
tal across all of the jobs, to analyze and improve different Microsoft
products. To do this, ScoPE exposes a SQL-like declarative query
interface, where users specify their business logic and the system
automatically figures out how to execute that in a distributed envi-
ronment. Essentially, this means that the users don’t have to worry
about provisioning any machines (aka serverless) and focus only on
their data processing logic at hand. Therefore, it is easy to see how
such a managed cloud data service can offer a tremendous business
proposition.

The size and volume of the ScopPE job service infrastructure
makes workload optimization critical. This is because even few
percentage point improvements could lead to millions of dollars of
savings in operational costs. At the same time, by being a managed
service, SCOPE users have little control over the query processing
infrastructure. Consequently, a lot of prior research has looked at
automatic tuning the performance of ScCoPE query engine [21, 41].
Scopk query engine further exposes a number of tuning knobs,
including dozens of hints at the script, data, and plan level. However,
only a small pool of ScopPE users are able to leverage these hints
while a large fraction are non-experts who need help on a regular
basis. In fact, our internal survey shows customers asking for better
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tooling and support to improve their ScopE queries. Thus, workload
optimization remains a major pain point for SCOPE customers.

The above customer pain often ends up as support requests or
incidents reports to the service provider. Our analysis over the inci-
dent management data from the ScopE job service reveals tens of
thousands of incidents per year with almost ten times the number
of incidents as the number of system developers on support calls
at any time, and more than hundred times the number of users as
the total number of system developers. SCOPE business leaders are
further keen to improve performance in order to reduce the total
cost of operations. In fact, there is an ongoing effort to reduce the
total processing time by several percentage points year over year.
The situation becomes worse when new query engines are added,
e.g., Microsoft’s big data infrastructure now also supports Spark
query engine, which has very different performance characteristics,
in addition to Scope. Not to mention the growth of the workload
on existing ones, e.g., approximately ten percent increase in the
number of SCOPE jobs in the first quarter of this year (2019). There-
fore, it is not possible for system developers to cope up with the
increasing support load.

Although we have described the problem of missing DBA in the
context of the SCOPE job service infrastructure above, it is easy to
imagine a similar situation for other cloud services. In fact, our
internal discussions at Microsoft reveal very similar pain points in
other parts of Azure as well. In summary, the lack of a DBA has the
following key implications for cloud data services:

1. Performance tuning becomes harder for cloud data services. The new
class of big data systems, with their declarative query interfaces,
are quite complex and require a lot of tuning for good performance.
Furthermore, the cloud infrastructures add more dimensions by
allowing resources to be provisioned dynamically and on demand,
thereby making performance tuning even harder.

2. Reducing costs becomes critical with managed cloud services. Cloud
data services users are typically billed in a pay-as-you-go manner
and so performance efficiency is important for lowering the dollar
bill. Given that reducing the operational costs is often a key motiva-
tion for enterprise customers to move to the cloud, higher dollars
costs may simply not be acceptable.

3. Lack of user control. Managed data services do not provide much
control to the users. This is for a variety of reasons, including pri-
vacy and security, impact on other customers due to multi-tenancy,
and most importantly for deliberately abstracting away the low-
level internal details for the ease of use. However, by not having
much control, users cannot tune performance even if they had
the expertise to do so. This puts the onus of performance tuning
squarely on the cloud providers.

4. Long tail of non-expert users. Given the ease of spinning up data-
base instances in the cloud, managed data services have attracted a
wide variety of users, many of whom having little or no expertise.
Typically, in the absence of a DBA, the non-expert users rely on
self-help through discussion forums and other support groups to
resolve their performance related issues. However, many of these
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issues end up being repetitive or even trivial, and unless these fo-
rums are monitored and curated with the accurate information,
they may end up confusing people.

5. System developers are the new virtual DBAs. Finally, managed
services make the lives of system developers harder. They routinely
see performance issues popping up as service incidents or support
requests and need to handhold the users for their performance
tuning tasks. This is counter-productive and often frustrating for
the system developers since it eats up a lot of their precious feature
development time. It is also not a scalable situation since the number
of cloud users far outnumber the number of system developers, and it
is not possible for the system developers to cope up with the deluge
of incident reports or support tickets.

3 WORKLOAD OPTIMIZATION PLATFORM

Cloud computing is changing the way users interact with databases,
i.e., via data services, and therefore we need to reinvent the DBA
function for this data services world. We see the following key
requirements in doing so:

DBA-as-a-service. Given the service-oriented approach in the
cloud, offering DBA as a service is a natural extension of the DBA to
this new data services world. This makes sense since cloud providers
are responsible for tuning their managed data services. They also
have the unique advantage of observing workloads in their cloud
infrastructure, and deriving customized tuning decisions for each
workload that are likely to be far more efficient and reliable.

Engine-agnostic. Workload optimization needs to be agnostic to
the underlying query engine so that it could be developed and scaled
independently, the cloud providers can apply the tuning decisions
based in a fast feedback loop, and optimizations built once could be
used multiple times across several engines. Therefore, it is crucial
to not tie workload optimization to any specific query engine.

Global optimization. Workload optimizations need to have a
global view of the workload, i.e., consider the logs and the metadata
across the end to end data processing pipeline, in order to make
global optimizations decisions that are crucial for reducing the total
cost of operations, which is also a primary motivation for workload
optimization in the first place.

To address the above requirements, we present the PEREGRINE
workload optimization platform. Figure 2 shows the high-level
architecture of PEREGRINE. It consists of three major components.

(i) Workload Representation. A workload representation component,
shown just below the query engines in Figure 2, takes as input
the anonymized logs from the query engine as well as related run-
time information from the underlying platforms (job scheduler,
job manager, resource manager, storage service, etc.). The output
is one or more intermediate workload representations that are
common across workloads and query engines. These intermediate
representations are then input to the engine-agnostic optimization
algorithms. Workload representation alleviates much of the pain
associated with parsing and interpreting the raw query logs and
turning them into actionable data.
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Figure 2: The Peregrine architecture, consisting of the work-
load representation, the workload optimization, and the
workload feedback layers.

(ii) Workload Optimization. A workload optimization component,
shown in the middle in Figure 2, mines the query workload for
interesting patterns and runs optimization algorithms to tune those
patterns. Identifying patterns and optimizing for them makes work-
load optimization more practical and less open-ended. Currently,
PEREGRINE focuses on the three typical class of patterns derived
from our production workloads at Microsoft, however, more pat-
terns could be easily added. Each of these pattern classes enable
several workload optimizations.

(iii) Workload Feedback. Finally, a workload feedback component
shown at the bottom in Figure 2, collects the output of the opti-
mization algorithms and converts them into actionable feedback
that could be either consumed by the users in the form of insights
and recommendations or fed back to the query engines for self-
tuning. For self-tuning, the feedback is encoded as query annota-
tions, loaded onto a feedback server, and requires some (minor)
query engine changes for taking actions (Section 6).

The key strengths of the PEREGRINE platform are as follows.
First, it provides a clean interface (only need to understand the
query logs) which could easily be implemented for different query
engines. Second, it provides an extensible infrastructure wherein
more instrumentation, parsers, patterns, optimizations, and feed-
back could be added based on evolving workload needs. Third, it
provides library implementations of each of the above which act
as the starting point for covering several common scenarios. And
finally, it has multi-faceted endpoints (insights, recommendations,
feedback) which can cater to different user expectations.
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In the rest of the paper, we discuss the above three components
of PEREGRINE, namely the workload representation, optimization,
and feedback. Thereafter, we present a case study and discuss the
road ahead with PEREGRINE.

4 WORKLOAD REPRESENTATION

A core capability of PEREGRINE is to allow developers to describe
query workloads in an engine agnostic manner. Workloads thus de-
scribed could be then optimized using a common set of algorithms.
This is useful because workloads from different query engines need
to be described only once, taking away the pain of parsing, pro-
cessing, and wrangling the low-level system logs over and over
again for every new optimization. Below we first describe query
plan instrumentation for capturing and subsequently affecting dif-
ferent traits of a query plan. Then we describe the feature store to
collect the universal set of all features from the query plans. Finally,
we present a query workload IR for efficiently running workload
optimization algorithms on top.

4.1 Query Plan Instrumentation

Query optimizers have long been responsible for making the opti-
mization decisions in a query plan, including multi-query optimiza-
tion. However, with optimizers becoming increasingly complex,
the preferred choice is to make minimal deep changes in the sys-
tem, i.e., instead of in-lining new tuning features within the query
optimizer, offload them to an external component that could be
developed, managed, and scaled independently. PEREGRINE fills
precisely this gap: it can run expensive optimizations over large
workloads offline and provide hints for optimizing future queries.
However, PEREGRINE still needs to be aware of the query plan traits
in order to make optimization decisions outside the query optimizer.
Most query engines log the query plans, so one option could be
to reconstruct the optimizer internal state, e.g., the memo for a
Cascade optimizer [36], using the query plan logs. However, this
reconstructed state could be lossy since the optimizer states are
not dumped entirely for practical reasons (e.g., there could be thou-
sands of columns and so the column reference list might be pruned
to reduce the logging overhead) or security concerns.

PEREGRINE provides an instrumentation mechanism for captur-
ing query plan traits and logging them as signatures in the query
logs. For each node in the query plan, the signatures capture the
internal optimizer state, corresponding to different query plan traits
(e.g., operator names, attribute references, required properties, etc.),
into fixed sized hashes and output them as part of the query logs.
These signatures also ease some of the featurization pain in the high
dimensional plan space, e.g., for user-defined operators that may
end up with lots of one-hot encoded features. Furthermore, they
could be analyzed externally to generate optimization hints when
similar query traits are seen in the future. Capturing signatures
as part of query plans and taking actions based on the signatures
in future queries allows PEREGRINE to externalize workload opti-
mization with minimal changes to the query optimizer. Signatures
could be of different types to capture different query plan traits, e.g.,
capturing only the operators, capturing the entire subexpression
rooted at each operator, capturing physical properties, etc. We have
implemented multiple such signatures for Score query plans, they
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could be composed to identify combined traits, and they could also
be used across multiple engines. In summary, signatures are hash
identifiers of different granularities for each node in the query plan
that (i) capture the query subexpressions and related properties
from the optimizer’s internal memo, (ii) have a cheap and conve-
nient way to featurize query plans into a flat structure, (iii) reduce
the dimensionality of the workload, e.g., user-defined operators
that are very difficult to featurize otherwise, (iv) use them to cluster
subqueries with similar characteristics (more on this in Section 5),
and (v) leverage them for invoking query optimization rules once
the feedback is provided (more on this in Section 6). While light-
weight, signatures are currently limited to equality comparisons
and do not support more advanced containment checks. Likewise,
plan properties cannot be reconstructed from the the signatures.
Exploring some of these would be part of future work.

Finally, PEREGRINE makes it easy to extend the signatures to
capture more kinds of query plan traits for newer optimization
scenarios. The signature API takes a plan subexpression as input
and returns the list of signatures as output.

4.2 Feature Store

We need to parse and analyze the features from the past query logs
before we can optimize query workloads. Unfortunately, however,
parsing and transforming query logs is a significant effort since
developers typically start analyzing the logs from scratch for every
new optimization. Therefore, one of our first goals in PEREGRINE is
to make this process easier by creating a common data platform, on
top of the query logs, which can be used to collect the universal set
of features and quickly build the optimizations on top. It consists
of two steps: (i) an ingestion step to collect the logs from different
query engines, and (ii) a parsing step to transform the logs into a
common set of features. We describe these two below.

The ingestion pipeline starts with query workload logs from
different query engines. These logs are anonymized as mandated
by the specific scenario, for example, whether the logs are stored
within the cluster or in an outside service. PEREGRINE provides
connectors to typical cloud-based storage services, such as Azure
Data Lake Storage [57], Azure Data Explorer [4], and Azure SQL
DB [8]. The ingestion layer can also access the raw logs directly for
standalone deployment. Collecting and persisting the workloads
logs into a persistent store is an important step for enabling analysis
over the past workload.

Once the workload logs are accessed, we need to extract the rel-
evant entities from the anonymized query logs for further analysis.
There are three pieces of information that we mostly care about:
(i) query metadata, including flags and parameters provided with
the query, user and account names, query submit, start, and end
times, available resources, etc., (ii) query plans including the logical
(input, analyzed, optimized), the physical, and the execution plans
for the query, and (iii) runtime statistics from the executed data flow,
including row counts, latency, CPU time, I/O time, memory usage,
etc. Since these get generated at different points in query execution,
they may be present in different places in the workload log and
even in different log files. We collect this query information from
specific subsets of the log and call it the query traces.
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Finally, we parse the query traces from the ingestion pipeline.
For this, PEREGRINE provides a set of parsers to parse the query
metadata, plans, and runtime statistics from various query engines
in different formats, e.g., JSON, XML, or plain text. We need a new
parser for each engine but can share much of parsing code for
different formats of the same engine, e.g., parsing an operator node
might be common. In any case, we believe that the combination of
engines and formats will only be a small finite set of parsers that
could be leveraged repeatedly. The parsers output a set of common
workload features along with the relationships, as illustrated in
Figure 3. A query workload can consist of multiple applications,
each with metadata, metrics, and multiple queries. Queries can have
one or more plans each with a set of operators. Multiple instances of
an operator run in a distributed setting and the metrics collected by
the application link to each operator instance. Query engines such
as Scopk and Spark pre-aggregate metrics across operator instances,
e.g., average latency of an operator. We can further aggregate at
the metrics for plans, queries, or the application level.

The feature store described above takes care of preprocessing the
workload logs, which is often the biggest pain point in optimizing
query workloads and requires considerable effort. The feature store
also has an extensible design to add more query engines, extract
other pieces of information from the log, add new parsers for custom
formats, and add newer workload features as they emerge. Still,
we expect the set of customizations to be limited and hence we
could share many of the pieces for a new data service and save
considerable effort.

4.3 Workload IR

The entities shown in Figure 3 are quite descriptive, however, we
still need to generate an efficient representation for running opti-
mization algorithms. Therefore, PEREGRINE allows creating more
efficient intermediate representations (IRs), which generalize across
query processors, and could be used to run various optimization
algorithms on top. Figure 4 shows three such denormalizations,
the plans IR, the subexpressions IR, and the operator instances
IR, which de-normalizes the workload entities for more efficient
processing later on. Table 1 illustrates a subexpressions IR, where
each row is a subexpression with associated attributes and metrics.
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QueryID | Signature | Operator EstCardinality | RowLength | EstSubexprCost | EstOperatorCost | PartitioningType | Partitions | Cardinality | SubexprRuntime | OperatorRuntime
1 155 RangeScan 1837160 251 104.736 104.736 Range 2 15891 3.203 0.016
2 155 Exchange 1837160 251 743.709 638.973 RoundRobin 250 15891 3.203 0.016
3 326 UDF 1837160 251 744.077 0.368 RoundRobin 250 15891 66.966 55.16

Table 1: Illustrating an subexpressions IR instance. Each row in the IR corresponds to one subexpression in one of the queries.
The columns include query level attributes (only QueryID here), compile-time attributes (e.g., Estcardinality, RowLength, etc.),
and run-time attributes (e.g., Cardinality, OperatorRuntime, etc.).
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Figure 4: Example denormalized IRs.

Applications can create and use on or more of these IRs depending
on the granularity of the information they need. IRs could be stored
in various storage backends, using the same set of connectors as
used for accessing the query workload logs, and are very useful for
quickly drawing insights and building optimizations over a query
workload. Once created, IRs could also be shared across multiple
workload optimization applications. In particular, researchers at
Microsoft have found subexpressions IR to be useful in a number of
applications, including finding subexpressions to materialize [40],
learning cardinalities over recurring workloads [64], and mining
physical design hints. IRs further generalize across query engines
as well, e.g., researchers have used the same subexpressions IR for
both Scope and SparkSQL.

Thus, PEREGRINE helps encapsulate all engine specific knowledge
from the query workloads and exposes only the generalized IRs
to the optimization algorithms, in order to speed up the time to
build workload optimization features. We discuss these workload
optimizations below.

5 WORKLOAD OPTIMIZATION

Workload optimization is very broad topic and there could be nu-
merous ways to optimize query workloads. To make the problem
space more tractable, below we first identify the key workload pat-
terns from production workloads at Microsoft. Then, we describe
the class of optimizations that we have identified and the tools that
could be applied for each of these workload patterns.

5.1 Patterns

We now discuss the key patterns that we have identified from
the Scopk job service workloads. Given that Scope job service
runs analytics over all of the products at Microsoft, such as Bing,
Office, Windows, Skype, XBox, etc., we believe it constitutes a fairly
representative mix of enterprise data analytics. Figure 5 depicts
the three major workload patterns that we have identified. The
points on horizontal axis represent a query template that has to
be provided with specific dataset versions, while the points on

(a) Recurring (b) Similarity (c) Dependency

Figure 5: Typical patterns observed from production work-
loads at Microsoft. The lines correspond to the pattern di-
rection, e.g., vertical lines indicate that recurring queries
are same queries templates running over different datasets,
similar queries are ones having overlaps over same datasets,
while depending queries consume the outputs of queries

over previous dataset instances.

vertical axis represent the changes in data with time. Therefore,
each execution of the query is captured by a point on the graph.
The lines on the graph indicate one of the multiple relationships
between queries and data and between queries themselves.

Recurring. Production workloads are often repetitive, i.e., same
queries executed periodically with new inputs and parameters. To
illustrate, more than half of big data workloads at Microsoft consists
of recurring queries [43]. Such recurring queries often do bulk of the
preprocessing to generate cooked data, which could then be used
for final results. The left plot in Figure 5 visualizes the recurring
queries as vertical bars, i.e., same queries executing over newer
versions of data. Recurring queries indicate the predictive nature
of the workload, thereby allowing us to analyze the past workloads
and inferring the future ones.

Similarity. In addition to recurring, queries in the same recurring
intervals are also often similar. The horizontal bars in Figure 5 repre-
sent the similarity between different queries on the same version of
data. This similarity is because the queries are written by multiple
users who access the same sets of inputs in the cloud infrastructure.
A typical similarity pattern is common subexpressions or overlaps
across queries. More than half of production big data queries at
Microsoft have overlaps with at least one other query [41]. The
similarity workload patterns indicate the interactions within the
workload and therefore we can build multi-query optimizations to
optimize this interaction.

Coordinating. Finally, production workloads often consist of data
pipelines where the output of one query (from the previous recur-
ring interval) is consumed by a subsequent query (in the subsequent
recurring interval). Such dependencies introduce SLA requirements
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and are crucial to be aware of while optimizing. We depict such
dependencies across data instances using diagonal bars in the right
most plot in Figure 5. Dependency patterns indicate the connectiv-
ity in the workload and gives rise to a whole new set of dependency
driven analytics [50].

The above workload patterns could be leveraged to enable a large
set of workload optimizations. We describe some of these below.

5.2 Optimizations

We identified three broad classes of optimizations, one for each of
the workload patterns describe above. We refer to them as learned,
multi-query, and dependency-driven optimizations respectively. Be-
low we describe these classes with several specific examples in each
one of them.

5.2.1 Learned Optimizations. Recurring workload patterns pro-
vides opportunities to learn from the past, i.e., build models over it,
and apply them again in the future. Some examples in this direc-
tion include topics around learning optimizer, which has gained a
lot of traction lately. For instance, cardinality estimation, i.e., the
size of the intermediate outputs at each point in a query plan, is
to key picking a query plan in a query optimizer. Unfortunately,
however, cardinality estimation remains the Achilles heels of query
optimization [46] due to inaccurate operator selectivities, correla-
tions between different portions of the data, and exponential error
propagation up the query DAG. To address this problem, our recent
work analyzes past ScOPE query workloads and learns cardinality
models for similar subexpressions seen in the past [64]. We im-
plemented this system using PEREGRINE. Others have looked at
building more general models for range predicates [33, 65]. Going
a step further, some have even proposed to directly pick the query
plans using neural networks [48, 54]. Recurring workloads could
help in learning such models.

Performance prediction is another example where recurring
query workloads could be exploited. In fact, a lot of work has been
done on prediction the performance (latency, throughput, etc.) of
a query workload [23, 35] and improving job predictability [43].
Going further, we used PEREGRINE to learn the cost models that
ScoPE query optimizer uses to pick the best physical execution plan,
i.e., the plan with cheapest cost [59]. This is useful because cost
models try to estimate the performance of a query plan which is
very difficult in a distributed big data system. Existing cost models
use heuristics to model the most important queries and are often
way off for other queries. Therefore, instead of trying to build the
perfect analytical model to estimate query costs, the past recurring
workloads could be analyzed to learn cost models that predict the
costs for future queries.

Cloud computing allows to pick resources dynamically, however,
picking the right set of resources is a challenge. Recurring patterns
are useful to build resource models from past workload and use
them for future prediction [45, 56]. Learning resource models is fur-
ther useful for combining query and resource optimization. Current
big data query processing systems first choose a query plan and
then pick the resources (number of containers, size of containers,
etc.) required to run the plan. However, the choice of query plan
itself depends on the resources used, e.g., hash join will be better
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with small number of large containers, while sort-merge join will
do better with exactly the opposite. It turns out that resource-aware
query planning can results in plans that are twice as fast and yet
consume half the resources [63]. Analyzing recurring workloads
and providing it as a feedback to the query engine helps make
resource-aware decisions [59].

Finally, there is a recent trend of building machine learning
models for data distributions and using them for more efficient data
structures, e.g., indexes [44], bloom filters [52], etc. Again, recurring
workloads nicely supports learning such data distributions.

5.2.2  Multi-query Optimizations. The similarity pattern we see
in Figure 5 is an obvious candidate for multi-query optimizations.
The overlapping computations across queries result in the same
partial computations being executed multiple times, thereby lead-
ing to a significant wastage of compute resources. Analyzing the
query workloads and creating materialized views to reuse over-
lapping computation across queries could lead to significant re-
source savings and performance improvements. CloudViews, one
of the first features built using the PEREGRINE platform, performs
automatic computation reuse in the Scope and HDI [6] environ-
ments [40, 41, 58]. Multi-query optimization has been extensively
research and several other approaches could be applied to cloud
data services, e.g., MRShare [53], PigReuse [27], etc.

Apart from reusing common subexpressions, the similarity pat-
terns provides significant opportunities to also cache data at differ-
ent layers in the data service. For instance, caching hot data that
is accessed frequently into a fast storage tier [39]. Likewise, we
could also cache query plans, partially or fully, in order to improve
the compilation time. This is useful because query compilation
is increasingly becoming an overhead in large complex queries,
potentially accessing hundreds of inputs. Plan caching is also help-
ful because we know the actual costs of the partial or full plans
seen before [32], and hence the query optimizer can: (i) make more
informed decisions in picking the best plan, and (ii) significantly
prune the search space by discarding poor plans.

5.2.3 Dependency-driven Optimizations. The dependency patterns
could be used to run a number of dependency driven analytics [50].
Example includes computing the relative importance of queries
in a data pipeline and scheduling them according to their impor-
tance [30]. Another example is creating physical designs for an-
alytical data pipelines: enterprise data analytics often consists of
a pipeline of queries that have data dependencies between them,
i.e., the output of a producer query could be used in a subsequent
consumer query. However, the producer query is often not aware
of how its outputs are being consumed and so it may not create
the right physical designs (partitioning, sorting, etc.). Our analysis
from Scope workloads indicate that more than half of the structured
outputs from producer queries end up re-partitioned or re-sorted
down in the consumer queries. Analyzing workloads and mining
frequently applied physical design could help to move those designs
to the producer query itself. The physical designs could be created
in the base output or as additional materialized views. However,
note that it is hard for users to mine and come up with such com-
plex physical design hints. In fact, we have already received several
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requests from ScoPE customers to automatically apply physical de-
sign hints to their ScopE jobs. Leveraging the dependency patterns,
extracted from PEREGRINE feature store, makes this possible.

5.3 Tools

We need a core set of algorithmic tools to run the optimizations dis-
cussed in the previous Section. Interestingly, different optimization
classes map naturally to different sets of tools (not comprehensive
by any means), as discussed below. The learned optimizations, for
instance, would need the machine learning libraries to run typical
learning tasks, including feature engineering, model training, and
model inference. Popular machine learning libraries include Scikit-
learn [55], ML.Net [16], TensorFlow [20], PyTorch [19], Keras [15],
etc. These libraries could run in a standalone manner or scaled
via distributed processing platforms such as Spark, Scorpg, etc. The
resulting learned models could be managed using tools such as
MLFlow [66], ONNX [17], etc.

Multi-query optimizations could be often formulated as linear
programs and so we need an industry strength mathematical solver,
one that can scale to large number of variables and can apply a num-
ber of pruning. Popular examples include CPLEX [11], Gurobi [14],
and OpenSolver [49].

Finally, the dependency-driven optimizations could be often
mapped to graph problems, naturally or as approximations, and
so we need a graph processing engine, e.g, Neo4;j [51], to run such
optimizations. These optimizations could be further scaled out using
vertex-centric graph processing, e.g., Giraph [2], GraphLab [47], etc.,
which is a popular paradigm to divide and conquer graph analytics
over massive datasets. Vertex-centric graph processing has also
been shown to run efficiently within a database system [42], which
avoids introducing one more system for running the optimization
algorithms.

6 WORKLOAD FEEDBACK

Once the workload has been analyzed and optimizations decisions
have been gathered, we need to provide the feedback for actions.
PEREGRINE provides three kinds of feedback, namely, the insights,
the recommendations, and the self-tunings. Insights are essentially
summaries and reports over the workload IRs to help users un-
derstand their workload and take any appropriate tuning actions
based on their interpretation. PEREGRINE generates summaries over
the subexpressions IR and makes them available to the ScopE cus-
tomers for driving insights. Recommendations are outputs of the
optimization algorithms that are provided as hints to the users.
Users can apply these hints using the tuning knobs provided by
the query engines, e.g., SCOPE query engine provides dozens of
tunings knobs such as row count hint, operator algorithm hint,
and forcing join order hint. Recommendations involve users in the
tuning process since they are responsible for applying the hints
on their own. We have enabled physical design hints, mined from
the workload optimization in PEREGRINE, to the SCOPE customers.
Self-tuning is more complex since it requires integration with the
query engine, without requiring users in the loop. This is highly
desirable compared to recommendations because most of the Scope
job service users are non-experts, they do not have bandwidth to

Alekh Jindal, Hiren Patel, Abhishek Roy, Shi Qiao, Zhicheng Yin, Rathijit Sen, Subru Krishnan

control the various optimizations, and the process is too dynamic
to get right manually.

Below we describe how we built the self-tuning infrastructure for
the ScopE query engine. We first introduce the notion of query an-
notations for describing the self-tuning feedback, then we describe
the feedback service to serve the query annotations, and finally
we describe adding workload-awareness to the query engines by
consuming the query annotations in the query engines.

6.1 OQuery Annotations

A self-tuning query engine needs to interpret and act upon the
optimization decisions described in the previous Section. However,
making special modifications to the query engine for every new
optimization is not productive. Therefore, we encode the workload
optimization decisions into a common format that is (i) extensi-
ble to add more optimizations, and (ii) could be integrated with
multiple query engines. We call these encodings the query anno-
tations. Query annotations provide a clear interface (or contract)
between the workload optimization feedback and the changes in
the query engines to consume that feedback. These two are often
owned by separate teams within a company and so having a clear
contract helps to develop and maintain the workload optimization
algorithms and the query engines actions separately.

We define query annotations as a set of the following triplets:
Annotation(signature, action, parameters). Signatures are the query
plan identifiers as described in Section 4.1. Actions are the names of
the self-tunings performed by the query engine, e.g., the configura-
tion to apply, or the tuning knob to set, or the query optimizer rule
to invoke. Parameters provide the information needed for the action,
e.g., the configuration value or the optimizer rule parameters. Note
that a given signature may have several annotation actions, and
a given annotation action might be applied to several signatures.
Thus, the query annotations specify the self-tuning actions using
the parameters and conditioned upon the query plan signatures.

Below we first describe the feedback service to serve the anno-
tations to the query engines and then we describe making query
engines workload aware.

6.2 Feedback Service

The query annotations need to be consumed by the query engine
during compilation and optimization. The annotations need to be
further consumed by multiple query engines. Therefore, PEREGRINE
provides a feedback service to lookup the annotations from any-
where, and to scale annotation serving independently. We describe
this below.

The workload optimization algorithms output their query anno-
tations into a file in a cloud storage location. The feedback service
periodically polls this location for new annotations and bulk loads
any new annotation file present. In case of data corruption or fail-
ures, the feedback service could always be re-initialized from this
cloud storage location. The feedback service is backed by relational
storage, such as an Azure SQL Server instance, and so all annota-
tions are loaded into SQL tables.

The service provides APIs to lookup annotations by their sig-
natures, e.g., it can return all annotations for a given signature.
Each annotation is associated with a customer account, and queries
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from a customer account can load only the annotations associated
with that account. Note that a query typically contains several sig-
natures (recall that each node in the query plan corresponds to a
signature) and there could be feedback for several of them. Looking
up the feedback service for each individual signature can result in
significant compilation overheads. Therefore, the feedback service
allows to add tags to annotations and batch lookup all annotations
for given tag(s). Example tag includes recurring job name, i.e., a
periodic job that appears with a similar name each time. For such
jobs, the compiler could load all annotations corresponding to the
recurring job name in a single lookup.

We apply a few optimizations to improve the performance of
feedback lookup. First, we create an index on the signatures and the
tags to make the point and batch lookups faster. We always bulk
load the annotations for a customer account, thereby not having
to update the indexes incrementally. The feedback service further
caches annotations in the application layer since many queries
have common subexpressions and hence common annotations as
well. The typical lookup overhead from the feedback is in the order
of a few to tens of milliseconds, which is generally acceptable for
analytical workloads where compilation could run into several
seconds. Still for more latency sensitive workloads, we could co-
locate the feedback service with the query engine, or even query
the SQL Server backend directly.

In addition to serving the query annotations, the feedback service
could also help coordinate optimizations across multiple queries.
For example, CloudViews [41] used the service to obtain exclusive
locks when materializing common subexpressions for future reuse.
Thus, the feedback service can act as the synchronization point
across multiple queries for such optimizations.

Finally, the feedback service expires annotations when new an-
notations for the same signatures and the same actions are available.
In this case, the new annotations override the older ones. Alterna-
tively, we consider the hash collision probability of the signatures
and expire them well before any likely collision is possible. For
ScopE job service, we have found a few weeks to be a good heuris-
tic in the worst case. PEREGRINE also provides admin control for
purging all annotations for a given customer account and for en-
abling or disabling (without actually purging) the feedback for an
account.

6.3 Workload-aware Query Engine

We now discuss making query engines workload aware, i.e., learn-
ing from how things went in the past workload and taking optimiza-
tion actions for future queries. Figure 6 shows the query engine
centric view of the workload feedback in PEREGRINE. The enhanced
query engine has two key additions: (i) the mechanisms to load the
query annotations feedback from the past workloads, and (ii) the
capability to take optimization decisions based on that feedback.
We discuss these below.

There are several ways of loading the query annotations. We
could look up the annotations for each signature in the optimizer
(the point lookup described in Section 6.2). Alternatively, we could
pre-load the relevant signatures, using the tags defined in the feed-
back service, upfront in the compiler. Or, in case of smaller self-
contained applications, we could also load all available signatures
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Figure 6: End to end workload-driven feedback when using
PEREGRINE.

in the compiler (or optimizer) and use them wherever applicable.
The default behavior is to load the query annotations from the feed-
back service. However, we also support loading the annotations file
directly for debugging purposes: developers can quickly create and
test new annotation feedback without having to go via the feedback
service. This can also serve as a hot fix for customers in case they
have some imminent issues with their workload optimizations.

The engine also needs to apply multiple workload optimization
features developed by different teams. Many optimization features
can be independently applied if they are developed for different
stages or different workloads. For optimizations that interact on the
same workload, the query planner that triggers the rules decides the
order in which they are applied. For instance, a learned cardinality
model will be applied earlier in the logical plans before learned
cost models are applied in the physical plans. Furthermore, the
optimization decisions could be taken at different stages in the
query engine, namely compilation, optimization, scheduling, or
even the runtime. As a result, the logic for taking the actions could
be in the form of optimizer rules, configuration values, or even
learned models for any of the numerous system heuristics.

Finally, while we have mostly considered offline workload analy-
sis and feedback in this paper, the workload feedback illustrated in 6
could also be applied in a faster feedback loop or run in an online
manner for quicker adaptivity to the recently observed workload.

Depending on the query engine, the workload awareness de-
scribed above could either require changes to the engine or could
be provided as one or more extensions from outside. Below we
discuss both of these scenarios for the ScoPE and the Spark query
engines respectively.

7 CASE STUDY

We now discuss some of the scenarios that are enabled by PERE-
GRINE. In particular, we discuss how PEREGRINE helps develop multi-
ple optimizations quickly, apply the same optimizations across mul-
tiple engines, and democratizes workload optimization wherein sev-
eral developers and researchers can participate. Section 7 shows the
PEREGRINE instantiation for this case study. We will walk through
this instantiation below.

7.1 Multiple Optimizations

The CloudViews project [41] was started for workload optimization
in SCOPE job service, and the goal was to analyze and reuse com-
mon subexpression computations across the query workload. The
CloudViews team added two signatures to the SCOPE query engine,
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namely the strict and the recurring signatures, to capture the subex-
pression instances and templates respectively. The signatures are
emitted along with the query plans into the workload repository,
as shown in Figure 7. PEREGRINE then connects to the workload
repository, parses the query logs, and also links the runtime exe-
cution statistics with operators in query plans. The workload is
finally represented as subexpressions IR (see Section 4.3). Cloud-
Views mines the common subexpressions from the IR and runs the
view selection algorithm [40] on top of it. The selected views are
served to the query engine via the feedback service. CloudViews
adds a couple of optimizer rules and compiler flags, which require
modifications to the ScoPE compiler and optimizer. See [41] for
more details.

CloudViews opened the door for the use of common subexpres-
sions in other optimizations as well. In particular, query statistics
such as cardinality estimation could be improved over these subex-
pressions. Therefore, in the CardLearner project [64] cardinality
models are learned from past workload to optimize future queries.
Interestingly, the team could build upon the same workload IR and
invoke the machine learning libraries over the previously mined
common subexpressions. The learned models were loaded into the
same feedback service as new annotations for the same signatures
but different actions (cardinality model) and parameters (the model
string). Of course, the optimizer changes were required to use the
cardinality predictions from the models wherever applicable. How-
ever, by reusing the workload representation, the pattern mining,
and the feedback service, the total feature development time came
down from years to months. More importantly, the developer or
researcher could focus more on the core feature of learning the
cardinality model, rather than going through the painful process of
analyzing workloads right from the raw logs.

7.2 Multiple Engines

CloudViews turned out to be relevant for other query engines as
well. In particular, CloudViews was extended to the Spark query
engine as part of the SparkCruise project [58]. Two signatures -
strict and recurring were added in Spark via an event listener that
computes the signatures and logs the optimized query plan at the
end of query execution. We implemented the parsers to parse the
Spark logs and collect the same set of entities, as from the ScoPe
engine, into the feature store. Thereafter, the same enumerator
generated the subexpressions workload IR as for Scope. Once the
subexpressions IR were generated, we could leverage the same
workload optimization algorithms, the same query annotations,
and the same feedback service. This is fortuitous since the view
selection algorithm could be improved independently and leveraged
for multiple query engines automatically.

The Spark query engine needs additional optimizer rules to
use the CloudViews annotations from the feedback service. While
ScoprE required engine changes, Spark allows additional rules as
extensions from outside. SparkCruise team added these rules in
the PEREGRINE runtime library and referenced them in the Spark
optimizer. The Spark optimizer applies these rules during optimiza-
tion of logical query plan. SparkCruise thus developed was able
to reduce the total running time of TPC-DS benchmark queries by
30% on HDI [6] test clusters.
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Figure 7: PEREGRINE instantiation for the case study, il-
lustrating (i) multiple optimizations (materializing com-
mon subexpressions and learning cardinality models), and
(ii) multiple query engines (SCOPE and Spark).

Thus, we see how with PEREGRINE the same workload optimiza-
tions could be easily brought to multiple query engines, again
bringing down the feature development time from years to months.

7.3 Multiple Developers

In addition to building multiple optimizations and using them across
multiple query engines, PEREGRINE has also enabled multiple de-
velopers to be more productive. In fact, since we started building
PEREGRINE a year ago, over a dozen workload optimizations, or
apps as we call them, have been built by different developers, re-
searchers, and interns. This is because PEREGRINE abstracts many
of the painful steps, e.g., workload representation into an IR, which
need not be duplicated and allow people to build on each other’s
efforts, e.g., same view selection algorithm available to multiple
query engines. This has made our own lives easier internally since
it is now far easier to onboard new people, and to even bring in
their expertise from another query processing domain. Even ex-
ternally, our conversations with friends across companies such as
Hortonworks, Databricks, Flink, Lyft, Netflix, etc. reveal that this
could be a useful platform for collaboration. As a result, PEREGRINE
is under active development and we are working towards open
sourcing.

8 THE ROAD AHEAD

We now discuss the road ahead for PEREGRINE. We see two main
pillars of development in PEREGRINE going forward, namely ex-
tending it with more capabilities and improving the end to end
deployment experience. We elaborate on these two below.

8.1 Extensions

There is a significant room to extend PEREGRINE along several di-
mensions. First of all, new data services are rapidly mushrooming
in public clouds and we would like to represent their workloads
using PEREGRINE. Azure alone has more than a dozen data services
publicly available and having common workload representation
could enable several optimizations. This becomes further important
when customers move from one data service to another (e.g., their
application may be better supported by the other data service) or
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migrate from on-premise to cloud infrastructure (e.g., to leverage
managed hardware and software infrastructure), without losing
the workload optimization capabilities. Effectively, an engine ag-
nostic optimization platform like PEREGRINE also enables workload
migration to the most suitable query engine.

In addition to adding more query engines, there is also room to
develop the feedback end points. In particular, insights and recom-
mendations are challenging because they need to be both under-
standable as well as actionable. Insights are often helpful in a visual
form and there is a lot of prior work on visual analytics and expla-
nations [37, 61]. Likewise, recommendations are more helpful when
their impact is quantified. At the same time, the primary purpose of
recommendations is to involve user judgement in the loop and not
rely solely on the machine computed impact. Therefore, making
effective use of user judgement when serving recommendations is
a challenge.

Finally, although PEREGRINE currently focuses on query engines,
workload optimization can be applied more broadly to other layers
in the data processing stack. Components such as job scheduler,
resource manager, storage system, physical hardware, or even the
end user applications can all benefit from workload optimization.
There are several existing works in this direction, e.g., self-tuning
efforts for task schedulers [34], adaptivity in the storage layer [39],
etc. The goal will be to investigate whether these could be integrated
or the optimizations applied across multiple layers in the stack.

8.2 Experiences

There is a need to enhance the deployment experience of PEREGRINE
in several ways. Many of these would require integrating with
existing tools (with possible extensions) while others may need
building new ones. First of all, building workload optimization
apps involve a number of steps which need to be orchestrated.
Therefore, we need to make it easier to compose these steps into
pipelines, execute these pipelines efficiently, and be able to debug
and troubleshoot them in case of errors. Popular orchestration tools
include AirFlow [1], Celery [9], etc. The goal would be to integrate
them with PEREGRINE for a unified experience.

Second, feedback serving needs to be differentiated for differ-
ent environments. Apart from the current web service form factor,
feedback could also be served as a micro-service or even as a library
within an application, depending upon the latency requirements,
privacy concerns, etc. Feedback serving becomes further challeng-
ing with machine learning models, since it is tedious to serialize
and deserialize the models from different libraries. There are a lot
of prior tools and technologies for model serving [17, 60] and we
need to leverage the most appropriate ones for different scenarios.

Third, given that workload optimization is a continuous process,
we need to track the lifecycle of the feedback (e.g., which feed-
back was gathered, which queries was it applicable for, was the it
helpful in improving performance, etc.?). Incidentally, there is a
plethora of recent works on model management, e.g., ModelDB [62],
MLFlow [66], etc., and we need to extend it for more general feed-
back management. Tracking is needed to trace back the feedback in
case of failures (e.g., which feedback led to performance regression)
or for regulatory concerns (e.g., did optimization algorithms run
on sensitive data?).
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Finally, we need to build the user interfaces for better productiv-
ity, e.g., integration with the IDEs used by the developers, testing
and replaying queries with and without feedback and providing
more general configuration management for switching various
knobs in the system. These self-serving tools can significantly im-
prove the developer experience and enhance productivity.

9 OTHER RELATED WORK

Workload optimization is gaining a lot of traction with the major
cloud providers and below we provide a brief overview of some of
these efforts. While some believe that aggressive resource provi-
sioning can solve the performance tuning by dynamically adding
more hardware on demand [10], new trends like serverless com-
puting [3, 7, 13] are gaining popularity since they hide many of
the tuning and provisioning decisions from the user, putting the
onus on the cloud provider instead. Therefore, cloud providers are
increasingly looking at newer tools and technologies to improve
the customer experience. In particular, people have turned towards
Al for solving the hard workload optimization problems, such as
automatically creating indexes in Microsoft SQL Server [31] or
determining the best query paths using the IBM Db2 Al for z/OS.
Likewise, Oracle autonomous database aims to provide automated
(or self-driving) experience for much of the database management
and tuning [18]. Huawei’s GaussDB is another such effort to lever-
age Al for making database administration and tuning easier for
enterprise customers [12]. Thus, across the board, we see the in-
terest in Al for solving database problems. However, most of these
efforts are for a specific query engine and often for specific opti-
mizations as well.

The only work we are aware of that considers common infras-
tructure across engine is the database agnostic framework for la-
beling query strings from Snowflake [38]. However, it is limited in
terms of the optimizations it can support, since it does not exploit
query plans or runtime statistics. It can be used in coarse grained
applications such as workload sampling and security auditing.

10 CONCLUSION

In this paper, we presented PEREGRINE, a platform for optimizing
query workloads in cloud query engines. Key features of PEREGRINE
include an engine agnostic way of describing query workloads, an
intermediate representation (IR) to easily featurize the workload
and build a shared set of optimizations, a classification of work-
load patterns and their corresponding optimization techniques to
make the space of possible optimizations tractable, mechanisms
to serve workload feedback, and a prescription for adding work-
load awareness to a query engine. PEREGRINE has been used at
Microsoft to quickly implement, test, and deploy multiple workload
optimizations such as CloudViews and CardLearner. PEREGRINE
also provides a write once, run everywhere model for workload op-
timization across multiple engines such as ScopE and Spark, which
helped us bring CloudViews to Spark as well. In summary, this
paper ushers data systems into the era of intelligent public clouds,
essentially filling the gap of missing DBAs in these clouds.
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