Graph Analytics on Relational Databases

Alekh Jindal, Samuel Madden, Amol Deshpande, Michael Stonebraker

CSAIL, MIT

Abstract

Graph analytics is getting increasingly popular these days and there
is a deluge of new systems for graph analytics. However, it is
not clear how good or bad are the relational databases for graph
analytics. In this talk, I will share our experiences with graph
analytics on relational databases. Contrary to the popular belief,
modern relational databases can have very good performance over
graph analytics. Furthermore, we can offer better (and efficient)
programming interfaces for expressing graph queries in relational
databases, thereby not forcing the users to SQL.

1. INTRODUCTION

Graph data management has received a lot of attention in recent
times and a number of graph data management systems have been
proposed recently. These systems address roughly two kinds of
query workloads: (i) low latency online graph query processing,
e.g. social network transactions, and (ii) high throughput offline
graph analytics, e.g. PageRank computation. Typical examples
of systems for online graph processing include RDF stores (such
as Jena [8] and AllegeroGraph [1]) and key value stores (such as
Neo4j [12] and HypergraphDB [7]). Some recent graph processing
systems wrap around relational databases to provide efficient on-
line query processing. These include TAO [2] from Facebook and
FlockDB [5] from Twitter, both of which wrap around MySQL to
build a distributed and scalable graph processing system.

On the other hand, graph analytics differs from traditional data
analytics in three ways: (i) iterative nature of queries, (ii) main-
taining state across iterations, (iii) very large graphs. Hadoop has
gained a lot of popularity as a platform for large scale data analytics
in recent years. And indeed there have been several works to im-
prove upon iterative queries in Hadoop. These include HalLoop [3],
Twister [4], and Prltr. Though these works improve the perfor-
mance of iterative queries, users still need to think their analytical
graph queries as MapReduce jobs. Alternatively, other approaches
allows programmers different interfaces for expressing their ana-
Iytical graph queries. For instance, Pegasus [9] allows users to
express their graph queries as matrix operations and Pregel [11]
employs vertex centric model to express graph queries. Both Pega-
sus and Giraph [6] (open source implementation of Pregel), how-
ever, translate the user queries to MapReduce jobs. Trinity [13] and
GraphLab [10], also based on vertex centric computation model,
bypass the MapReduce query layer and talk directly to the underly-
ing distributed data store (key-value store and HDES respectively).

2. PROBLEM

This brings us to the question: what happens to the good old
relational database systems in the context of graph analytics? do
they become obsolete or are they still relevant for large scale graph
analytics? do users now need to dump their data from the rela-
tional database to a graph database or can they perform graph an-
alytics (with comparable performance) from within the relational

engine? Interestingly, relational databases have undergone several
path breaking changes in recent years. These include the advent
of column-oriented databases, main-memory databases, and array-
oriented databases. Could these recent advances be used for ef-
ficient graph analytics as well? How good or bad are relational
databases for graph analytics anyways? A recent work demon-
strated finding shortest paths in a graph on Oracle [15], a row-
oriented database system. However, several works in the column
store literature have shown the superiority of column stores over
analytical workloads. Could columns stores be exploited for graph
analytics as well?

Thus, there is an absence of a comparative study of modern re-
lational databases in the context of graph analytics. In our effort,
we are trying to benchmark and understand the performance of re-
lational databases for graph analytics. In this paper, we report our
findings so far. Our key observations are: (1) parallel graph explo-
ration can significantly reduce the number of joins, a key bottleneck
in relational databases, (2) relational databases can match or even
significantly outperform a graph database, and (3) column stores
have superior performance over graph analytics as well. Further-
more, apart from expressing graph analytics as SQL queries, we
also consider exposing a more natural vertex-centric programming
interface on top of a relational database. The vertex-centric inter-
face means that programmers can now actually think in terms of a
graph while still running their queries in a relational engine.

3. PERFORMANCE

We model a graph in a relational database as a set of edges,
i.e. we have an edge table for storing the edges and a node for
storing the node ids. However, each edge hop is a self-join over the
edge table. This could be fine for queries, such as triangle counting,
which involve only a handful of joins [14]. But for queries such as
finding shortest path, the number of join could quickly grow very
large, and hence very expensive, when exploring a large graph. To
address this, we explore graph in parallel along all outgoing edges,
instead of each edge at a time. This means that we do more work in
each iteration but significantly reduce the number of joins. In fact,
the number of joins is bounded by the diameter of the graph, which
in many graphs e.g. social networks is pretty small.

We compared the performance of relational databases on graph
analytics as follows. We picked a leading graph database system
and three relational databases: a row-oriented database, a column-
oriented database, and a main-memory database. We implemented
two queries, PageRank and Shortest Paths, on each of these sys-
tems. We created the appropriate sort orders and indexes for all
systems. We used four datasets from Stanford large network dataset
collection: (i) Facebook dataset having 4K nodes and 88K edges,
(i) Twitter dataset having 81K nodes and 1.8M edges, (iii) Google+
dataset having 107K nodes and 13M edges, and (iv) LiveJournal
dataset having 4.8M nodes and 68M edges.

Figure 1(a) and 1(b) show the result. We can see that relational
databases outperform the graph database on PageRank by up to two

Time (seconds)

M Graph Database
M SQL: Main-memory Store
SQL: Row Store
1000 -SQL: Column Store
1000
100
100

Lkl

10
Facebook Twitter GPlus LiveJournal

(a) PageRank

10000 100000

10000

Time (seconds)

Facebook

B Graph Database

B SQL: Main-memory Store
SQL: Row Store

[sQL: Column Store

Twitter

(b) Shortest Paths

1000

M Column Store
M Apache Giraph

100

Time (seconds)

10

1

GPlus LiveJournal Facebook Twitter GPlus

Figure 1: Graph Analytics on Relational Databases.

orders of magnitude. This is because PageRank involves full scan-
ning and joining of the nodes and edges table, something which
relational databases are very good at doing. The graph database,
on the other hand, cannot handle larger graphs. Finding shortest
paths involves starting from a source node and successively ex-
ploring its outgoing edges, a very different access pattern from
PageRank. Still we see from Figure 1(b) that relational databases
match or outperform the graph database in most cases. In fact, the
column-oriented database is two orders of magnitude faster than
the graph database on Twitter dataset. The only exception is the
main-memory database over Twitter dataset'. The graph database
again cannot handle very large graphs.

Note that the column-oriented database system stands out from
other database systems in terms of performance over graph analyt-
ics. This suggests that column stores could be highly suited for
graph analytics, just as they are suited for relational data analytics.
We are currently working on extending our benchmark to larger
datasets as well as on including more queries.

4. EASE-OF-USE

A key criticism of relational databases could be forcing pro-
gramers to use SQL, the de facto query interface in relational
databases. Indeed, implementing graph queries in SQL is tricky
and time consuming. Thus, the question is whether we can
have other graph-friendly query interfaces on top of a relational
database. Vertex-centric programming interface, e.g. Pregel, is one
such popular interface for graph analytics. We developed a sim-
ilar vertex-centric programming interface on top of the column-
oriented database system. The idea is that the users simply write
their vertex centric compute functions, same as in Pregel, and our
interface automatically maps it to the underlying SQL engine. As
a result, users do not have to deal with SQL at all. The system in-
vokes the compute function in each super-step and passes the mes-
sages from one super-step to the other. This is very similar to Gi-
raph, the open source implementation of Pregel, which maps vertex
centric computations to MapReduce jobs, without having users to
deal with them explicitly.

Figure 1(c) shows the performance of running shortest paths on
the vertex-centric interface of the column store compared to Gi-
raph. We can see that the column-store significantly outperforms
Giraph for smaller graphs. This is because Giraph suffers from the
initial startup cost of Hadoop MapReduce, which is not the case
for the column-store. Even for larger graphs the vertex-centric in-
terface on column store performs very similar to Giraph. This is

!This is because the main-memory database currently does not sup-
port updates with join condition and therefore we need to first select
the qualifying rows and then update them using an iterator.

in spite of Giraph loading the entire graph in memory and not per-
sisting any intermediate output, whereas the column store needs to
store a lot messages to disk. Thus, we see that column stores can
provide an efficient vertex-centric interface.

With vertex centric interface users can now easily express sev-
eral other graph analytic queries such as connected components,
random walk with restart, and other message passing algorithms,
right in their good old relational database.

S. CONCLUSION

Graph analytics is emerging as an important application area
and several graph data management systems have been proposed
recently. However, this requires users to switch to yet another
data management system. In this paper, we revisited relational
databases in the context of graph analytics. We implemented two
popular graph queries, PageRank and Shortest Paths, on differ-
ent relational database engines. Our results show that relational
databases can match or even outperform a graph database. In par-
ticular, column-oriented database can perform really well. Further-
more, we showed vertex-centric programming interface, which al-
lows programmers to easily specify their graph queries, on top of
a relational database. Our results demonstrate that graph analytics
over relational databases is promising and we could do both tradi-
tional as well as graph data management within a single system.

6. REFERENCES
(1]
2]

AllegroGraph, http://franz.com/agraph/allegrograph.

N. Bronson and al. TAO: Facebooks Distributed Data Store for the
Social Graph. USENIX ATC, 2013.

Y. Bu and al. The HalLoop Approach to Large-Scale Iterative Data
Analysis. VLDB J., 21(2):169-190, 2012.

J. Ekanayake and al. Twister: A Runtime for Iterative MapReduce.
HPDC, 2010.

FlockDB, http://github.com/twitter/flockdb.

Apache Giraph, http://giraph.apache.org.

HyperGraphDB, http://www.hypergraphdb.org.

Apache Jena, http://jena.apache.org.

U. Kang and al. PEGASUS: A Peta-Scale Graph Mining System -
Implementation and Observations. /CDM, 2009.

Y. Low and al. Distributed GraphLab: A Framework for Machine
Learning and Data Mining in the Cloud. PVLDB, 2012.

G. Malewicz and al. Pregel: A System for Large-Scale Graph
Processing. SIGMOD, 2010.

Neod4j, http://www.neo4;j.org.

B. Shao and al. Trinity: A Distributed Graph Engine on a Memory
Cloud. SIGMOD, 2013.

Counting Triangles with Vertica,
http://www.vertica.com/2011/09/21/counting-triangles.

A. Welc and al. Graph Analysis Do We Have to Reinvent the Wheel?
GRADES, 2013.

[3]
[4]
[51
[6]
[7]
[8]
[9]
[10]
[11]

[12]
[13]

[14]

[15]

LiveJournal
(c) Shortest Paths on Vertex-centric Interface

	Introduction
	Problem
	Performance
	Ease-of-Use
	Conclusion
	References

