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Overview

Data partitioning is a well-known tech-
nique for improving the performance
of database applications. By splitting
data into partitions and only accessing
those that are needed to answer a query,
databases can avoid reading data that is
not relevant to the query being executed,
often significantly improving perfor-
mance. Additionally, when partitions
are spread across multiple machines,
databases can effectively parallelize
query processing across them.

This chapter summarizes traditional
data partitioning techniques, motivates
the need for a more robust data parti-
tioning over modern ad-hoc query work-
loads, introduces the concept of hyper
partitioning for creating a robust parti-
tioning tree and hyper join to process
join queries over such a partitioning tree,
and finally discusses repartitioning tech-
niques for adapting the partitioning tree
in a robust manner.
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Traditional Partitioning
Approaches

The traditional approach to data parti-
tioning is to split a table on some key, us-
ing hash or range partitioning. This helps
queries that have selection predicates in-
volving the key go faster, by only access-
ing the relevant portions of data. Like-
wise, for queries with joins, queries will
benefit when the database is partitioned
on attributes involved in the join, due
to local co-partitioned join processing in
each partition. Because of these perfor-
mance gains, many techniques have been
proposed in the literature.

Workload-based Partitioning

The typical approach is to find a good
data partitioning for a given query work-
load. These approaches assume that
the query workload is either provided
upfront or collected over time, and
try to choose the best partitioning for
that workload. Examples include fine-
grained partitioning (Curino et al 2010),
hybrid of fine- and coarse-grained parti-
tioning (Quamar et al 2013), skew-aware
partitioning (Pavlo et al 2012), deep
integration of partitioning with the query
optimizer (Nehme and Bruno 2011),
interdependence of different physical
design decisions (Zilio et al 2004),
integrating vertical and horizontal parti-
tioning decisions (Agrawal et al 2004),
and partitioning a B+-Tree on primary
keys (Graefe 2003). Workload-based
partitioning need to be reconfigured
every time the workload changes.
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Multi-dimensional Partitioning

Several partitioning techniques have
been proposed for multi-dimensional
data, e.g., K-d Trees, R-Trees, and
Quad-Trees. These are typically used
for spatial data with two dimensions.
Other approaches include binary search
trees such as splay trees (Sleator and
Tarjan 1985) and MAGIC to decluster
data on multiple attributes (Ghande-
harizadeh and DeWitt 1994). Recent
approaches layer multi-dimensional
index structures over distributed data
in large clusters. This includes Spatial-
Hadoop (Eldawy and Mokbel 2015),
MD-HBase (Nishimura et al 2011), and
epiC (Wang et al 2010), or adapting
the multi-dimensional index to the
workload in TrajStore (Cudré-Mauroux
et al 2010). Commercially, Oracle and
MySQL support sub-partitioning to
create nested partitions on multiple
attributes. IBM DB2 supports multi-
dimensional clustering tables to cluster
data along multiple dimensions and
build block-based indices on them.

Big Data Partitioning

Big data storage systems, such as HDFS,
partition datasets based on size. Devel-
opers can later create attribute-based
partitioning using a variety of data
processing tools, e.g. Apache Hive and
SCOPE (Zhou et al 2012). However,
such a partitioning is no different than
traditional database partitioning since
(i) partitioning is a static one time activ-
ity, and (ii) the partitioning keys must be
known a-priori and provided by users.
Recently, (Sun et al 2014) proposed to
create data blocks in HDFS based on

the features extracted from each input
tuple. Again, the features are selected
based on a workload and the goal is
to cluster tuples with similar features
in the same data block. AQWA looks
at adaptive data partitioning for spatial
data (2 dimensions). Their techniques
do not scale to higher dimensions (Aly
et al 2015). Apart from single table
partitioning, Hadoop++ (Dittrich et al
2010) and CoHadoop (Eltabakh et al
2011) propose to co-partition datasets in
HDFS to speed-up join queries. These
systems still assume a workload.

Database Cracking

Database cracking (Idreos et al 2007) is
a technique to adapt the layout of data
and indexes as queries arrive. Partial
sideways cracking extends this idea to
generate adaptive indexes on multiple
columns (Idreos et al 2009). Cracking is
designed for in-memory column-stores
and it adapts the data to every query in
the system. It does not naturally apply
to a distributed setting for two main
reasons. First, the cost of repartitioning
in a distributed setting is higher than
in a main memory system. So, it is
very expensive to repartition data on
every access as cracking does. Second,
cracking splits the data on every new
predicate it encounters, which can result
in a large number of blocks. However,
in a distributed setting, the number of
data blocks that can be created is limited
because blocks must be a certain size to
amortize latencies of disk and network
access. As a result, adding a split for a
new predicate involves merging existing
partitions and re-splitting them to keep
the number of blocks constant.



Robust Data Partitioning 3

Robustness

Modern data analytics has newer data
partitioning needs. Data science, for
instance, often involves looking for
anomalies and trends in data. There is
no representative workload for this kind
of ad-hoc, exploratory analysis, and the
set of tables and predicates of interest
will often shift over time. For example,
an analyst may look for patterns in a
database of multi-dimensional web click
events (with user history, demographic
information, and platform information
as dimensions). The analyst may want to
view this data according to any of it’s di-
mensions – e.g., they may want to query
according to the user’s past browsing
patterns, by their age or income, or
by whether they are using a mobile
phone or a laptop. As the specific set of
attributes of interest is not necessarily
known upfront, workload-based parti-
tioning techniques cannot be applied.
Furthermore, as the workload is ad-hoc
in nature, database cracking cannot be
applied as well. Figure 1(a) illustrates
the data partitioning dilemma that
analysts face with modern workloads.

Analysts are either stuck with naı̈ve
size based partitioning that offers no
data skipping capability and hence very
poor performance (full scan). Or, alter-
natively, they could pick one of the more
recent adaptive partitioning techniques,
e.g., cracking (Idreos et al 2007) that
would make the first few queries even
slower than full scan, but will gradually
improve if successive queries are on the
same dimension, i.e., having a selection
predicate on the same attribute. In
case the query dimension changes, the
performance again goes back worse than
full scan before gradually improving
with successive queries on the new
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Fig. 1 Need for robust data partitioning.

dimension (referred to as naı̈ve adaptive
partitioning). This is really painful for an
analyst exploring multiple dimensions:
analysts want a data partitioning scheme
that is robust to the ad-hoc nature of the
modern workloads and provides good
performance from the first query itself,
adaptively improving from there on.

Hyper-partitioning

Distributed storage systems, such as
HDFS, subdivide a dataset into chunks,
called blocks, based on size (usually
128MB). Workload-based partitioning
techniques for such systems, including
content-based chunking (Bhatotia et al
2011) and feature-based blocking (Sun
et al 2014), create blocks such that
irrelevant blocks could be quickly
skipped for the specific query workload.
Hyper-partitioning goes a step further by
creating blocks based on a partitioning
tree that allows to skip data over almost
all ad-hoc queries, without having any
information about the query workload.
Such a partitioning also serves as a good
starting point for an adaptive query
executor to improve upon.

Since hyper-partitioning partitions
the data along several dimensions, it
could end up de-clustering the data
blocks across machines and performing
random I/Os for each block. However,
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this is still fine; large block sizes in
distributed file systems (Ghemawat
et al 2003) combined with fast network
speeds lead to remote reads being almost
as fast as local reads (Ananthanarayanan
et al 2011; Binnig et al 2016). Essen-
tially, hyper-partitioning sacrifices some
data locality in order to quickly locate
the relevant portions of the data on each
machine in a distributed setting.

The rest of this section first intro-
duces the notions of robust partitioning
tree and attribute allocations in that tree,
and then describes how to construct and
query such a tree.

Robust Partitioning Tree

The hyper-partitioning partitioning tree,
or simply the robust tree, is represented
as a balanced binary tree, i.e., the dataset
is successively partitioned into two until
it reaches the maximum partition size.
For HDFS, hyper-partitioning takes the
block size as the maximum partition
size. The choice of binary tree is delib-
erate as it is more general (a four-way
partitioning can be achieved by two
successive two-way partitioning) as well
as fine-granular when adapting the tree
to workload changes later. Each node in
the tree is represented as Ap, where A is
the attribute being partitioned on and p
is the cut-point. All tuples with A ≤ p
go to the left subtree and rest go to the
right subtree. A leaf node in the tree
is a bucket, having a unique identifier
and a file name in the underlying file
system. This file contains the tuples
that satisfy the predicates of all nodes
traversing upwards from the bucket to
the root of the tree. Note that an attribute
can appear in multiple nodes in the
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Fig. 2 Multi-dimensional Partitioning Tree.

tree. Having multiple occurrences of an
attribute in the same branch of the tree
increases the number of ways the data is
partitioned on that attribute.

Traditional binary partitioning trees,
such as k-d tree (Bentley 1975), partition
the space by considering the attributes in
a round robin fashion, until the small-
est partition size is reached. Hence, the
tree can only accommodate as many at-
tributes as the depth of the tree. Fig-
ure 2 shows a k-d tree where the three
levels of the tree divide the dataset on
attributes A, B, and C, respectively. In
general, for a dataset size D, minimum
partition size P, and n way partitioning
over each attribute, the partitioning tree
contains blogn

D
P c attributes. With n = 2,

D = 1TB, and P = 64MB, only 14 at-
tributes can be accommodated in the par-
titioning tree. However, many real-world
schemas have way more attributes.

In contrast to k-d tree, the robust tree
performs heterogeneous branching in
order to accommodate more attributes
by partitioning different branches of the
partitioning tree on different attributes.
In other words, robust tree sacrifices the
best performance on a few attributes
to achieve robustness, i.e., improved
performance over more attributes. This
is reasonable as without a workload,
there is no evident reason to prefer
one attribute over another. Figure 2(b)
shows a robust partitioning tree. After
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partitioning on attribute A, the left side
of the tree partitions on B while the right
side partitions on C. Thus, the tree is
now able to accommodate 4 attributes,
instead of 3. However, attributes B and
D are each partitioned on 75% of the
data while attribute C is partitioned on
50%. Ad-hoc queries would now gain
partially over all four attributes, which
makes the partitioning more effective.

The number of attributes in the robust
partitioning tree, with c as the minimum
fraction of the data partitioned by each
attribute and r as the number of replicas,
is given as 1

c · blogn
D
P c. With n = 2, D =

1TB, P = 64MB and c = 50%, the num-
ber of attributes that can be partitioned
is 28. Note that the number of attributes
that can be partitioned increases with the
dataset size. This shows that with larger
dataset sizes, hyper-partitioning is even
more useful for quickly finding the rele-
vant portions of the data.

Robust tree can further leverage the
data replication in distributed storage
systems, e.g., 3x replication in HDFS.
Such replication mechanisms first par-
tition the dataset into blocks and then
replicate each block multiple times. In-
stead, first the entire dataset is replicated
and then each replica is partitioned
using a different partitioning tree. While
the system is still fault-tolerant (because
it has the same degree of replication), re-
covery becomes slower because it needs
to read several or all replica blocks in
case of a block failure. Essentially, fast
recovery time is sacrificed for improved
ad-hoc query performance. Such a
scheme can either increase the number
of attributes in the partitioning tree,
or increase the data fraction covered
per attribute. Both of these lead to
improved query performance due to
greater partition pruning.

Attribute Allocation

The goal of robust tree is to allocate at-
tributes to nodes in the tree such that
all attributes have similar advantage in
terms of data skipping or parallel pro-
cessing. Therefore, the allocation of an
attribute is defined as the weighted sum
of its fanout on each of the nodes it ap-
pears in the partitioning tree T , i.e., the
allocation of attribute i is given as:

Alloci(T ) = ∑
n∈nodes(T,i)

DataFractionn ·Fanoutn

The Allocation defined above gives
the granularity of data partitioning over
an attribute. Higher allocation means
more data skipping is possible. For
example, in Figure 2(b), attribute B ap-
pears on two nodes, one covering 50%
of the data while the other covering 25%
of the data. Thus, B has an allocation
of (0.5 ∗ 2 + 0.25 ∗ 2) = 1.5. With no
query workload, the goal is to balance
the benefit of partitioning across all
attributes in the dataset. This means that
same selectivity predicates on any two
attributes X and Y should have similar
speed-ups, compared to scanning the
entire dataset. To achieve this, the total
allocation is distributed equally among
all attributes. Each attribute gets an
allocation of b1/|A|, where |A| is the
number of attributes and b is the number
of buckets. For instance, if there are 8
buckets, and 3 attributes, the allocation
(average fanout) per attribute is 81/3 = 2.
In case of prior workload information,
users can provide relative weights of
the attributes and the attribute allocation
will be distributed proportional to these
weights. The intuition is then to compute
the maximum per-attribute allocation,
and then place attributes into the tree so
as to approximate this ideal allocation.
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Hyper Partitioning Algorithm

Algorithm 1 shows the pseudocode to
generate the robust partitioning tree.
It first calculates the depth of the tree
to be created (Line 3), then initializes
the queue with the root node of the
tree (Line 4), and starts a breadth-first
traversal to assign an attribute to every
node. The attribute to be assigned at
a given node is given by the function
LeastAlloc, which returns the at-
tribute which has the highest allocation
remaining. If two or more attributes have
the same highest allocation remaining,
the algorithm randomly chooses among
the ones that have occurred the least
number of times in the path from the
node to the root. Med returns the median
of the attribute assigned to this node
by finding the median in the sampled
data which comes to this branch. The
algorithm starts with an allocation of
2 for the root node, since it partitions
the entire dataset into two. Each time it
goes to the left or the right subtree, it
reduces the data it operates on by half.
Once an attribute is assigned to a node,
it subtracts from the overall allocation
of the attribute (Line 13). The algorithm
creates a leaf-level bucket in case it
reaches the maximum depth (Line 18).

Query Processing

A hyper partitioning query processor
considers the filter predicates in incom-
ing queries and filters out partitions
that do not match any of the query
predicates. For example, if there is
a node A5 in the tree and one of the
predicates in the query is A ≤ 4, then

Algorithm 1: CreateRobustTree
Input : Int D, Int maxPartitionSize,

Float[] alloc, Tuple[] initSample

1 Tree tree;
2 numBuckets← bD/maxPartitionSizec;
3 treeDepth← log2(numBuckets);
4 Queue queue← {(tree.root, treeDepth,

initSample)};
5 while queue.size > 0 do
6 node,depth,sample← queue.first();
7 if depth = 0 then
8 node← NewBucket ();
9 Continue;

10 node.attr← LeastAlloc(alloc);
11 node.val← Med(sample,node.attr);
12 lS, rS← SplitSample(node.attr,

node.val);
13 node.left← CreateNode();
14 node.right← CreateNode();
15 alloc[node.attr] -= 2/2maxDepth - depth;
16 depth -=1;
17 queue.add((node.left, depth, lS));
18 queue.add((node.right, depth, rS));

any of the partitions in right subtree of
the node don’t need to be scanned.

Using Spark, for instance, a job can
be constructed where relevant partitions
are split into tasks, a set of partitions
such that the total size is not more than
4GB. Each task reads the blocks from
HDFS in bulk and iterates over the tu-
ples in main-memory. A tuple is returned
if it matches the predicates in the query.
Tasks are executed independently by the
Spark job manager across all machines
and the result is exposed to users as a
Spark RDD. Users can use these RDDs
to do more analysis using the standard
Spark APIs, e.g., run an aggregation.

This section described hyper parti-
tioning and processing selection queries
over a hyper partitioned input. The
following section describes techniques
for processing join queries over two or
more hyper partitioned inputs.
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Hyper Joins

Hyper partitioning may end up partially
partitioning tables on several different
attributes, such that when two tables A
and B are joined, a partition in A may
join with several partitions in B, each lo-
cated on HDFS. One option is to sim-
ply perform a shuffle join, i.e., reparti-
tion both A and B so that each partition
of A joins with just one partition of B.
However, this can be suboptimal if each
partition of A only joins with a few par-
titions on B; instead, building a hash ta-
ble over some partitions of A (or B) and
probing it with partitions from B (or A)
can result in significantly less network
and disk I/O.

Example 1 Suppose table A has 3 par-
titions and table B has 3 partitions. Sup-
pose A1 joins with B1 and B2, A2 joins
with B1, B2 and B3, and A3 joins with B2
and B3, and each machine Mi has mem-
ory to hold 2 partitions to build hash ta-
bles on A. Consider building a hash ta-
ble over A1 and A3 on M1; we will need
to read B1,B2 and B3. We then build an-
other hash table over A2 on M2 and
again read B1,B2 and B3. In total, we
read 6 blocks. As an alternative, build-
ing a hash table over A1 and A2 on M1
and another one over A3 on M2 requires
reading just B1,2∗B2,2∗B3 = 5 blocks.

Thus, building hash tables over differ-
ent subsets of partitions will result in dif-
ferent costs. Unfortunately, finding the
optimal collection of partitions to read
is NP-Hard. However, heuristically solv-
ing the problem can still provide signif-
icant performance gains over shuffling.
To obtain these gains, partitions must be
constructed such that, for a join between
tables A and B, each partition of A only
joins with a subset of the partitions of B.

Hyper join provides this property and is
designed to move fewer blocks through-
out the cluster than a complete shuffle
join when tables are not co-partitioned.

The rest of this section formulates
hyper join as an optimization problem,
presents an optimal solution based on
mixed integer programming, introduces
an approximate algorithm which can run
in a much shorter time, discusses hyper
joins for multiple join predicates, and
finally shows a two-phase partitioning
technique to add join attributes into the
robust partitioning tree.

Problem definition

Consider relations R and S, which
can join on attribute t. Let R =
{r1,r2, . . . ,rn} and S = {s1,s2, . . . ,sm}
be the collection of data blocks ob-
tained from hyper partitioning. Let
V = {v1,v2, . . . ,vn} be a collection of m-
dimensional vectors, where each vector
corresponds to a data block in relation
R. The j-th bit of vi, denoted by vi j,
indicates whether block ri from relation
R overlaps with block s j from relation S
on attribute t (these are the blocks that
must be joined with each other). Let
Ranget(x) be a function which gives the
range (min and max values) of attribute
t in data block x and 1(s) be a function
which gives 1 when statement s is true.
Given two relations R and S, and for
each block ri from R and s j from S, let
vi j = 1(Ranget(ri) ∩ Ranget(s j) 6= /0).
A straightforward algorithm to compute
V has a time complexity of O(nm). The
Ranget values for each block are stored
with each block in the partitioning tree.
Let P = {p1, p2, . . . , pk} be a partition-
ing over R, where P is a set of disjoint
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Fig. 3 Illustrating hype join.

subsets of the blocks of R and its union
is all blocks in R. Each pi is constrained
to be able to fit into memory of the node
performing the join. ṽ(pi) is used to
denote the union vector of all vectors in
pi, i.e., ṽ(pi) =

∨
r j∈pi

v j, where v j is the
vector for block r j. Let δ (vi) = ∑

m
k=1 vik

indicate the number of bits set in vi.
Given a partition pi, C(pi) defines the
cost of joining pi with all partitions in
S as the number of bits set in ṽ(pi), i.e.,
C(pi) = δ (ṽ(pi)). This corresponds to
the number of blocks to be read to join
pi. Next, the cost function C(P) over
a partitioning is defined as the sum of
C(pi) over all pi in P:

C(P) = ∑
pi∈P

C(pi)

Thus, the problem of computing hy-
per join is finding the optimal partition-
ing P of relation R.

Consider the example in Figure 3,
with table R = {r1,r2,r3,r4} and table
S = {s1,s2,s3,s4} and assume |P| = 2,
i.e., that there is sufficient memory to
store |R|/|P| = 4/2 = 2 blocks of R in
memory at a time. The interval on each
partition indicates the minimum and
maximum value on the join attribute
from all the records. The arrows in the
figure indicate the two corresponding
partitions overlapping on the join at-
tribute. From the figure, r1 needs to join
with s1, r2 needs to join with s1, s2,

etc. Therefore, V = {v1 = 1000,v2 =
1100,v3 = 0110,v4 = 0011}. A hash
table could be built over multiple yellow
partitions to share some disk access of
green partitions. For example, a hash
table could be built over the first two
yellow blocks (r1 and r2) and another
one over the last two yellow blocks (r3
and r4), so that only 5 green blocks
need to be read from disk, assuming
only one green block is in memory
at a time. In this way, the partition
P = {p1 = {r1,r2}, p2 = {r3,r4}},
which is optimal. The overall cost
C(P)= 5, since ṽ(p1)= 2 and ṽ(p2)= 3.

Intuitively, the objective function
C(P) is the total number of blocks
read from relation S, with some blocks
being read multiple times. From the
perspective of a real system, the size of
pi is constrained, both due to memory
limits and to ensure a minimum degree
of parallelism (the number of partitions
should be larger than a threshold). If
memory is sufficient to hold B blocks
from relation R, then we need c = dn/Be
partitions. We now define the Minimal
Partitioning problem.

Problem 1. Given a set of data blocks from re-
lation R, find a partitioning P over R such that
C(P) is minimized, i.e.,

arg min
P

C(P)

subject to |P|= c,

|pi| ≤ B,∀pi ∈ P.

Optimal Algorithm

This section describes a mixed integer
programming formulation which can
generate the minimal partitioning. Given
the maximum number of data blocks B
that can be used to build a hash table
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due to available worker memory, the
total number of hash tables to be built
are c = dn/Be. For each data block
ri from relation R and each partition
pk, the assignment of ri to partition
pk is indicated with a binary decision
variable xi,k ∈ {0,1}. Likewise, for each
data block s j from relation S, a binary
decision variable y j,k ∈ {0,1} indicates
if the j-th bit of ṽ(pk) is 1.

The first constraint in Problem 1 re-
quires that the size of each partition pk
is under the memory budget B,

∀k,
n

∑
i=1

xi,k ≤ B

The second constraint requires that
each data block ri from relation R is as-
signed to exactly one partition,

∀i,
c

∑
k=1

xi,k = 1

Given a partitioning P, for each par-
tition pk, every overlapping data block
from relation S must also be in parti-
tion pk. Let Jk be the set of data blocks
from relation R which overlaps with data
block sk from relation S.

∀i,∀k,∀ j ∈ Jk, yi,k ≥ xi, j

We seek the minimal input size of re-
lation S,

min
m

∑
j=1

c

∑
k=1

y j,k

Solving integer linear programming
(ILP) of this form is generally exponen-
tial in the number of decision variables;
hence the running time of this algorithm
may be prohibitive. The proof for NP-
hardness of the problem can be found
in Lu et al (2017).

R←{r1,r2, . . . ,rn}, P← /0, P ← /0
while R is not empty:

merge P with data block ri with smallest δ (ri ∨ ṽ(P))
if |P|= B or ri is the last one in R:

add P to P and P ← /0
remove data block ri from R

return P

Fig. 4 A bottom-up approximate solution.

Approximate Solution

Taking B data blocks from relation
R with smallest δ (ṽ(P)) is NP-hard
and there is no algorithm for n1−ε -
approximation for any constant ε > 0.
However, an approximate bottom-up
algorithm, as shown in Figure 4, can
provide practical runtimes.

The algorithm starts from an empty
set of partitions P and an empty parti-
tion P . It iteratively adds a data block ri
into P with smallest δ (ri∨ ṽ(P)) until
there are B blocks in partition P or no
data block left in relation R. It then adds
P into P until P contains all blocks from
relation R. A straightforward implemen-
tation of this algorithm has a time com-
plexity of O(n2) (where n is the number
of blocks of R), since the minimum cost
block (requiring a scan of the non-placed
blocks) needs to be computed n times.

Joins Over Multiple Relations

Hyper join technique can be extended to
multiple inputs. Consider TPC-H query
3. If the join order is (lineitem ./
orders) ./ customer and the inter-
mediate result of the first two tables is
denoted by tempLO, then the relation
customer needs to join with tempLO
on custkey. If custkey is the join
attribute in the customer partitioning
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tree, only tempLO needs to be shuf-
fled based on custkey, and then hyper
join can be used instead of an expensive
shuffle join, in which both tempLO and
customer need to be shuffled.

With more relations to join, shuffle
join over two intermediate outputs of hy-
per joins could be more efficient. Con-
sider TPC-H query 8. If the join order
is ((lineitem ./ part) ./ orders)
./ customer, then the intermediate re-
sult with relation lineitem needs to
be shuffled twice. Instead, changing the
join order to (lineitem ./ part) ./
(orders ./ customer) can use hyper
join twice and a shuffle join over the in-
termediate results.

Two-phase Hyper Partitioning

Hyper join leverages hyper partitioning,
however, the robust partitioning tree
described so far, partitions data based
solely on the selection predicates. Thus,
it’s unlikely to have the join attribute
in very many nodes in the tree, and
it’s highly possible that every parti-
tion will overlap with a large number
of partitions. Two-phase partitioning
tackles this challenge by injecting the
join attributes into the partitioning
tree, as depicted in Figure 5. The first
phase splits on join attributes (shown in
orange), while the second phase splits
on selection attributes (shown in blue).
During the first phase, median values of
the join attributes are used to recursively
split the dataset into two. During the
second phase, the join partitions are
further partitioned on selection attributes
using the standard hyper partitioning.

Consider the left partitioning tree in
Figure 3 as an example. There are two

Two-phase	
partitioning

Fig. 5 Illustrating two-phase partitioning

levels in the tree which are reserved for
the join attribute, which, assuming data
is uniformly distributed in the range
[0,400], leads to four disjoint parti-
tions with range [0,100), [100,200),
[200,300), and [300,400). The same
procedure is also applied to the right
partitioning tree, which creates four
disjoint partitions with range [0,150),
[150,250), [250,350), and [350,400).

Robust Repartitioning

Hyper partitioning and hyper join allow
an analyst to quickly get started with her
ad-hoc queries. However, the analyst
also want the partitioning to adapt as her
analysis progresses, e.g., drilling down
web click data into successively smaller
age groups, to provide even better query
performance. Robust repartitioning
provides the mechanisms to achieve
this. When a query is submitted a repar-
titioning optimizer explores alternative
partitioning trees to find the best one
and decides whether repartitioning is
worthwhile. The optimized plan only
accesses data which is to be read by
input queries, i.e., data that is not read
by queries during repartitioning is not
accessed. This has two benefits: (i) data
that is not touched by any query is never
repartitioned, and (ii) query processing
and repartitioning share scans reducing
the cost of repartitioning.
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The rest of this section describes
the cost model used, introduces three
basic transformations used to transform
a given partitioning tree, describes a
divide-and-conquer approach to con-
sider all possible alternatives generated
from the transformation rules for insert-
ing a single predicate, discusses how
to handle multi-predicate queries, and
lastly shows a smooth repartitioning
technique to adapt to changing join
predicates. It is worth noting that the en-
tire optimization process is transparent
to users, i.e., users do not have to worry
about making repartitioning decisions
and their queries remain unchanged with
the new access methods.

Cost Model

Consider a window (W ) of queries that
happened in the past X hours. X is a
parameter in adaptive query executor
and it determines how quickly the
system reacts to workload changes. For
each query q in the query sequence, the
cost of processing q using partitioning
tree T is given as:

Cost(T,q) = ∑
b∈lookup(T,q)

nb

where lookup(T,q) returns the set of
relevant buckets for query q in T and
nb is the number of tuples in bucket b.
The cost of the query window is the sum
of the cost of individual queries. For
a query being executed, the optimizer
might want to transform the partitioning
tree to a new partitioning tree T ′ result-
ing in a set of buckets B ⊂ lookup(T,q)
being repartitioned. The benefit of this
transformation is:

Benefit(T ′) = ∑
q∈W

Cost(T,q)− ∑
q∈W

Cost(T ′,q)

and the added cost of repartitioning is
given as:

RepartitioningCost(T,q) = c ∑
b∈B

nb

where c is the write-multiplier i.e., how
expensive writes are compared to a read.
Repartitioning is expensive, however
it only happens when the resulting
decrease in the cost of the query window
(benefit) is greater than the repartition-
ing cost. This check prevents constant
re-paritioning due to a random query
sequence and bounds the worst case
impact. To illustrate, consider a single
node in the tree and a query sequence
of the form σA<2,σB<2,σA<2,σB<2....
In this case, the data is not constantly
repartitioned. After doing it once, say
on A, the total cost goes down and
hence the repartitioning on B would not
happen as Benefit < RepartitioningCost.

Tree Transformations

A set of transformation rules allow ex-
ploring the space of possible plans when
repartitioning the data. Consider a query
predicate of the form A ≤ p, denoted as
Ap. Only partitioning transformations
that are local, i.e., that do not involve
rewriting the entire tree, are considered.
These local transformations are cheaper
and amortize the repartitioning effort
over several queries. The three basic
transformations are discussed below.
(1) Swap. replaces an existing node in
the partitioning with the incoming query
predicate Ap. As only the accessed data
is repartitioned, we consider swapping
only those nodes whose left and right
children are fully accessed by the
incoming query. Applying swap on an
existing node involves reading both sub-
branches, and restructuring all partitions
beneath the left subtree to contain data
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Fig. 6 Node swap in the partitioning tree.

satisfying Ap and the right subtree to
contain data that does not satisfy Ap.
Swaps can happen between different
attributes (Figure 6(a)), in which case
both branches are completely rewritten
in the new tree. Swaps can also happen
between two predicates of the same
attribute (Figure 6(b)), in which case
the data moves from one branch to the
other. For example, in the Figure 6(b),
if node Ap′ is A10 and predicate Ap is
A ≤ 5, then data moves from the left
branch to the right branch, i.e., the left
branch is completely rewritten while the
right branch just has new data appended.

Swaps serve the dual purpose of un-
partitioning an existing (less accessed)
attribute while refining on another (more
accessed) attribute. As both the swap at-
tributes as well as their predicates are
driven by the incoming queries, they re-
duce the access times for the incoming
query predicates. Finally, note that it is
cheaper to apply swaps at lower levels in
the partitioning tree because less data is
rewritten. Applying them at higher lev-
els results in a much higher cost.
(2) Pushup. pushes a predicate as high
up the tree as possible. This can be done
when both the left and the right child of
a node contain the incoming predicate,
as a result of a previous swap, as shown
in Figure 7. This is a logical partition-
ing tree transformation, i.e., it only re-
arranges the internal nodes without any
modification to the leaf nodes.
A pushup transformation is checked
every time a swap transformation
is performed. The idea is to move

X Ap

Ap' Ap

X

Ap Ap

Ap

X X

Ap'

Z

Ap

X Y

XAp

X Y

Ap'

Q[Ap]

Q[Ap]

Q[Ap]
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Fig. 7 Node pushdown in partitioning tree.
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Z
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X Y

XAp

Y Z

Ap'

Q[Ap]

Q[Ap]

Q[Ap]

Q[Ap]

Fig. 8 Node rotation in partitioning tree.

important predicates (ones that have
recently or frequently appeared in the
query sequence) progressively up the
partitioning tree, from the leaves right
up to the root. This makes important
predicates less likely to be swapped
immediately, because swapping a node
higher in the partitioning tree is much
more expensive. Another advantage
of pushup is that it causes a churn
of the attributes assigned to higher
nodes in the upfront partitioning. When
such a dormant node is pushed down,
subsequent predicates can swap them
in an incremental fashion, affecting
fewer branches, thus making the tree
transformations more robust.
(3) Rotate. transformation rearranges
two predicates on the same attribute such
that more important (recently accessed
or frequently appearing in the query
sequence) predicate appears higher
up in the partitioning tree. Figure 8
shows a rotate transformation involving
predicates p and p′ on attribute A. The
goal here is to churn the partitioning tree
such that predicates on less important
attributes are more likely to be replaced
first. Similar to the pushup transforma-
tion, rotate is a logical transformation,
i.e., it only rearranges the internal nodes
of the partitioning tree and it is always
performed wherever possible.



Robust Data Partitioning 13

attributes={A,B,C,D} 
buckets = 8 
depth = 3

alloc[A] = 1.189  
alloc[B] = 1.189 
alloc[C] = 1.189 
alloc[D] = 1.189

alloc[A] = -0.811 
alloc[B] = 1.189 
alloc[C] = 1.189 
alloc[D] = 1.189

alloc[A] = -0.811 
alloc[B] = 0.189 
alloc[C] = 1.189 
alloc[D] = 1.189

alloc[A] = -0.811 
alloc[B] = 0.189 
alloc[C] = 0.189 
alloc[D] = 1.189

alloc[A] = -0.811 
alloc[B] = 0.189 
alloc[C] = 0.189 
alloc[D] = 0.689

alloc[A] = -0.811 
alloc[B] = 0.189 
alloc[C] = 0.189 
alloc[D] = 0.189

alloc[A] = -0.811 
alloc[B] = -0.311 
alloc[C] = 0.189 
alloc[D] = 0.189

alloc[A] = -0.811 
alloc[B] = -0.311 
alloc[C] = 0.189 
alloc[D] = -0.311

(i) (ii) (iii) (iv) (v) (vi) (vii)

B C

A

B

AA

D4 D4 B5 D6

B7 C3

A5

A2 D4 B5 D6

B7 C3

A5

A2 A2 B5 D6

B7 C3

A5

B7 B7 B5 D6

A2 C3

A5
Swap D4 Swap D4 Pushdown B7 Rotate A5

A2

B5 D6

C3

A5

B C

A

D D B D

B C

A

D D B

B C

A

D D

B C

A

D

B7

B7

Fig. 9 Introducing predicate A2 into the partitioning tree.

Above three partitioning tree trans-
formations can be combined to capture
a fairly general set of repartitioning
scenarios. Figure 9 shows an example,
where first nodes D4 is swapped with
incoming predicate A2 at the lower level,
then A2 is pushed-up one level above,
and finally it is rotated with nodes A5
and C3. In the process, only half the
leaves are repartitioned. Thus, in larger
trees, repartitioning mostly happens on
small fractions of the data modifying a
few subtrees locally.

Divide-And-Conquer
Repartitioning

Given a query with predicate Ap and a
partitioning tree T , there are many dif-
ferent combinations of transformations
that need to be considered. However, ob-
serve that the data access costs over a
subtree Tn, rooted at node n, could be
broken down into the access costs over
its subtrees, i.e.,

Cost(Tn,qi) = Cost(Tnle f t ,qi)+Cost(Tnright ,qi)

where, Tnle f t and Tnright are subtrees
rooted respectively at the left and the
right child of n. Thus, finding the best
partitioning tree can be broken down
into recursively finding the best left
and right subtrees at each level, and
considering parent node transformations
only on top of the best child subtrees.
For each transformation, the benefit and
cost of that transformation is consid-

ered and the one which has the best
benefit-to-cost ratio is picked. Table 1
shows the cost and benefit estimates
for the different transformations. For
the swap transformation, denoted as
Pswap(n,n′), the query costs are recal-
culated. However, pushup and rotate
transformations, denoted as Pswap(n,n′)
and Ppushup(n,nleft,nright) respectively,
inherit the costs from children subtrees.
Applying none of the transformations
at a given node is denoted as Pnone(n).
This approach helps to significantly
reduce the candidate set of modified
partitioning trees.

Above divide-and-conquer algorithm
has a complexity of O(QNlogN), where
N is the number of nodes in the tree and
Q is the number of queries in the query
window. More details on the algorithm
can be found in Shanbhag et al (2017).

Repartitioning with Multiple
Predicates

A predicate of the form A ≤ p gets in-
serted in the tree as Ap and on insertion,
only the leaf nodes on the left side of the
node are accessed. A > p is also inserted
as Ap with the right side of the node be-
ing accessed. For A≥ p and A < p, let p′

be p−δ where δ is the smallest change
for p’s data type. We insert Ap′ into the
tree. A = p is treated as combination of
A≤ p and A > p′.

Now consider a query with two
predicates Ap and Ap2. The brute force
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Transformation Notation Cost (C) Benefit (B)
Swap Pswap(n,n′) ∑b∈Tn c ·nb ∑

k
i−0[Cost(Tn,qi)−Cost(Tn′ ,qi)]

Pushup Ppushup(n,nleft,nright) C(P(nleft))+C(P(nright)) B(P(nleft))+B(P(nright))
Rotate Protate(p, p′) C(P(nleft|right)) , for p’ on nleft|right B(P(nleft|right)) , for p’ on nleft|right
None Pnone(n) C(P(nleft))+C(P(nright)) B(P(nleft))+B(P(nright))

Table 1 The cost and benefit estimates for different partitioning tree transformations.

approach is to consider choosing a set
of accessed non-terminal nodes to be
replaced by Ap and then for every such
choice, choose of set of remaining nodes
to be replaced by Ap2. Thus, the number
of choices grows exponentially with
the number of predicates. A greedy
approach is to try to insert each pred-
icate in the query into the partitioning
tree. The best among the best plans
obtained for different predicates is
picked and the corresponding predicate
is removed from the predicate set.
Likewise, the remaining predicates are
inserted into the best plan obtained so
far. The algorithm stops when either all
predicates have been inserted or when
the tree stops changing. Doing this adds
a multiplicative complexity of O(|P|2)
where P is the set of query predicates.

Smooth Repartitioning

A key limitation of the repartitioning
techniques presented so far is that
they do not adapt in response to join
queries. Instead, each table adapts
independently and tables end up being
partitioned on different attributes and
ranges, such that hyper join would not
provide a performance advantage over
shuffle joins. After the initial two-phase
partitioning, with new incoming queries
containing a new join attribute, the
partitioning tree should also shift to
the new join attribute. However, repar-
titioning all of the data immediately

would introduce a potentially very
long delay, and, when the workload
is periodic, could lead to oscillatory
behavior where it switches from one
partitioning to another. Furthermore, a
table with multiple foreign keys may
join with multiple tables. For example,
in TPC-H, queries join lineitem and
orders on order key and lineitem
and supplier join on supplier key.
Smooth repartitioning addresses these
challenges by maintaining multiple
partitioning trees, building each when a
new popular join attribute is seen, and
migrating blocks between them. The
key goal is to adapt partitioning trees
in a way that facilitates joins while still
maintaining the performance advantages
of partitioning for selection queries.

Smooth partitioning creates a new
partitioning (initially empty) tree, when
it observes a query with a new join
attribute. The new tree’s join attribute
comes from the new query and the its
predicates are used to build the lower
levels of the tree. Smooth repartitioning
also repartitions 1/|W | of the dataset
from the old tree to the new tree, where
|W | is the length of the query window.
This is accomplished by randomly
choosing 1/|W | of the blocks in the
old tree, and inserting them into the
new tree (because files are only ap-
pended in HDFS, it is possible to do
this without affecting the correctness
of any concurrent queries). To avoid
doing repartitioning work when rare
queries arrive, smooth repartitioning can
be configured to wait to create a new
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(1)	A	partitioning	tree	on	A
(2)	Smooth	repartitioning	from	A	to	B
A	new	partitioning	tree	B	is	created.	Some	data	blocks	under	tree	A	are	repartitioned	after	running	each	query. (3)	Repartitioning	completes

Fig. 10 Illustrating smooth repartitioning.

partitioning tree until the query window
contains some minimum frequency fmin
of queries for a new join attribute; in this
case once the tree is created, fmin/|W |
of the blocks will be moved.

As more queries arrive with the new
join attribute, smooth repartitioning
repartitions more data into the new
partitioning tree using the following
algorithm. It first calculates the per-
centage of two types of queries in the
query window and the data in each of
the partitioning trees. If the incoming
query’s join attribute is the same as the
newly created partitioning tree and the
fraction of data in the new partitioning
tree is less than the fraction of its type
in the query window, data from the old
partitioning tree is moved to the new
one, again by randomly selecting blocks
and moving them.

Consider the example in Figure 10.
The algorithm starts from a partition-
ing tree optimized for join attribute A.
When a query with new join attribute B
comes, a new partitioning tree for B is
created with two-phase partitioning and
repartitions 1/|W | of the dataset from
the old partitioning tree. The color of
nodes from the lower levels of the par-
titioning trees indicate the size of data.
The darker the color is, the larger the
size of data is. After the new tree is
created, both the partitioning trees are
maintained with different join attributes.
As more queries with join attribute B
appear in the query window, more data
from the old partitioning tree is reparti-

tioned to the new one. The above proce-
dure is iterated until the query window
only includes queries with join attribute
B. After the dataset finishes repartition-
ing, the old partitioning tree for join at-
tribute A is removed and only the parti-
tioning tree for join attribute B is main-
tained, which is depicted by the last sub-
figure in Figure 10. (Of course, in many
applications there will not be a complete
shift from one join to another, in which
case multiple trees will be preserved.)

Conclusion

This chapter described new advance-
ments in data partitioning for modern
applications that are ad-hoc in nature
and do not have any upfront query
workload. The key ideas presented
include the notion of robustness, the
concept of hyper partitioning for cre-
ating a robust partitioning tree without
upfront query workload, a hyper join
technique to efficiently process join
queries over hyper partitioned data, and
a set of robust repartitioning techniques
to steadily adapt the partitioning tree to
changes in the workload.

Robust data partitioning revisits the
design of a database in the face of mod-
ern ad-hoc query workloads, recalibrat-
ing the database systems to the expec-
tations of modern users — good per-
formance from the first query itself and
adaptively improving from there on.
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