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Cloud Trends

- Managed Query Engines
- Easy to get started: no setup/installation
- Serverless models: no resource provisioning

- Complex Workloads
- Large and growing:
Millions of queries, machines; Exabytes of data

- Sophisticated:
SQL + UDFs (Python, C#, Java) + ML ...

—Total cost of ownership (TCO) is important!

Query — —> Result

—Lots of moving parts!!
=Very hard to optimize!!!

—Lack of expertise; DBAs!!!!

—Tough cloud developer life!!!!! . SpCM’
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Current state of Key Decisions in SCOPE
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Current state of Key Decisions in SCOPE

Cost
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Current state of Key Decisions in SCOPE

Container Size
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Current state of Key Decisions in SCOPE

Cluster Size
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Workload Challenges in SCOPE

- Large DAGs
+ 20% jobs have >50 operators; 3% have >500

- Large #tasks -

- 50% jobs have >100 tasks; 10% have >10K Cardinality é
— Result

- Structured + Unstructured data oNIAmdll Cost Model

oooooo

+ 40% jobs have unstructured inputs

- Shuffle more important than join
+ 5x more shuffles than joins Containers Clusters -

- Optimizing data movement
- 66% jobs have shuffle; 17% have >10 shuffle/job

- User defined operators
- 40% jobs with table UDFs; 15% with scalar UDFs
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Large workloads =>Learn It Up!

O PyTorch
T TensorFlow



Global single-attribute correlations
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- Workload diversity, complexity, evolution!

Cluster Size

Oops!



Learning Challenges

Scalability!
---------------------------------------------------------------- Accuracy!

Global

Workload = ‘ :> Model

Robustness! O Py-l-OrCh | @ Overheads!
T Tensorflow g}

Reg ressions! Containers Clusters -
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A fine-grained learning approach

- Characterize workloads into smaller subsets

- ldentify and tag internal states as seen by the optimizer
- User them to characterize later on

- Learn specialized micromodels for each subset

- Targeted learning and feedback
- Divide and conquer to manage the cloud complexity



A fine-grained learning approach
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Building Production Confidence

- Preproduction Validation
- Identify the workload subset to experiment on
- Run and compare performance before/after

- Avoiding regressions
- Customer expectation: better or same performance
- Latency, total processing time, resources, etc.

- Dependencies
- What system version did the workload came from?
- What other models does a learned model depend on?

- Tracking

-+ When was it last trained?
- What input was it trained on?
- Can we purge the models trained on a given input?

- Retraining
- What is the right retrain interval?



Peregrine: more detailed view

User Tools (Scope Studio, Synapse Studio, Notebooks, Workload Repo)

System Developers / Operators
- Debugging experience

Data Admins / IT operations Data Users
- Operational decisions (view - Workload Insights Notebook

loc/retraining/costs/etc.) - Fine-grained enable / disable
- Org-wide control (enable global) - Explanations / Diagnostics

- Data science experience for data-
driven decisions

Serving Infra (SIS) Distributed System Infra (Managed clusters, Serverless)

System Context In-process Model Live Telemetry
(in-memory) Inference NS ERES

Feedback Actions Instrumentation

YA
Interface for
Model Auth,

Lookup,
Caching, and
Coordination

Annotations
Framework

System to Optimize

(e.g., SCOPE, Spark, SQL DW)

Model Management Deb
(deploy, troubleshoot) Signatures Framework (identifying internal states)

*

Workload IR + Algorithms (Python packages) + Scalable Analysis Infra (SCOPE, Spark, SQL DW) + Playback infra (flighting)

Data-parallel Workload Patterns

Asynchronous Dependency egression Preproduction training (massive (overlaps, similarities,

feedback Management Safeguard Validation

scale-out) dependencies)

Lifecycle management, e.g., versioning, tracking, operationalizing

o g

Researchers

- Data science experience for
new exploration

- Opportunities/overheads

*

Storage Infra (ADLS, Kusto, local)

Real-time
Derived data: Telemetry
Caches, (in-memory)
Views,
Indexes, Operational
Bloom filters, Telemetry
Sort orders, (local/SSDs)
Checkpoints,
Samples, Historical
Statistics Telemetry

(CEICREIG)

Data Unified Workload
Imputation Representation




CardLearner on Production Workloads

- Training
- 6 day of workload (~564K jobs)

- Recompile with the learned card models (~400K models)
- ldentify models causing plan changes (~52K models)

- Validation
-1 subsequent day of workload (~93K jobs)

- Filtering good models

- Avg. Baseline/Actual difference >= 100%
- Max. Validated/Actual difference <= 100%

- Avg. Validated/Actual difference <= 10% Training: ~6 hours (200 containers)
- Max. Validated/Predicted difference <= 1% Valldatlo.n: ~Thour (?00 containers)
. ~10K models Cumulative Model Size: 1.5MB

Towards a Learning Optimizer for Shared Clouds . Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi Qiao, Sriram Rao. VLDB 2019.



Model Accuracy
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- 153M subexpressions

- 95t percentile Error
Baseline: 465711%; CardLearner: 1%



Pre-production Experiments

- 20K jobs could use the feedback

- 2518 pipelines flighted, 1282 with plan changes, 41 regressed (excluded)
- For 1241 pipelines, ~12K jobs/day
- Avg. improvement: 6.41% latency, 6.90% processing time, 8.29% containers
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Production Deployment
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Summary

 Cloud query engines have grown very sophisticated

« =>not easy to optimize

* We can leverage machine learning over massive cloud workloads
« =>not easy to build global models

« We present a fine-grained learning approach:

« Characterize workloads into subsets

« Learned micromodels over each subset

« Easy to scale training to very large workloads

« Smaller, cheaper models to score within the query engine

* We have built and deployed learned cardinalities in SCOPE

« Large number of steps to avoid performance regressions

* Long journey: 2017 (intern)-> 2018 (integration)-> 2019 (perf)-> 2020 (deploy)
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