2 Microsoft

Microlearner:

A fine-grained Learning Optimizer for
Big Data Workloads at Microsoft

Alekh Jindal, Shi Qiao, Rathijit Sen, Hiren Patel

Microsoft

April 2021

d

Jal

Cloud Trends

- Managed Query Engines
- Easy to get started: no setup/installation
- Serverless models: no resource provisioning

- Complex Workloads
- Large and growing:
Millions of queries, machines; Exabytes of data

- Sophisticated:
SQL + UDFs (Python, C#, Java) + ML ...

—Total cost of ownership (TCO) is important!

Query — —> Result

—Lots of moving parts!!
=Very hard to optimize!!!

—Lack of expertise; DBAs!!!!

—Tough cloud developer life!!!!! . SpCM’

ﬁ N
IVE

Current state of Key Decisions in SCOPE

Cardinality

1.0

o
(o]
T

(Cardinality
Query — NS aVrr é — Result

oooooo

o
(*)]
T

o
S
T

Containers Clusters -

Fraction of Workload

o
[N)

O'O | | | | | | | | | | | | |
10° 1073 10% 10% 103 10° 107 10° 10" 103 10% 10Y 10%° 10% 10%3

Ratio of Estimated/Actual Cardinality

Current state of Key Decisions in SCOPE

Cost

1.0— T . .
o 0.8r | Cardinality
:Ci i Query — @AV é —> Result
5 o6l :
= |
Y= |
o |
S o4
E= | Containers Clusters -
© I
. |

O'O ! ! ! ! ! ! ! ! ! ! ! !
10°® 10* 102 10° 10°> 10* 10° 10% 10%° 102 10 10%® 10%® 10%°

Ratio of Estimated/Actual Costs

Current state of Key Decisions in SCOPE

Container Size

1.0 i
o 98 Cardinality
© .
S | OlIls%endl Cost Model — Result
= S
0.6} [
= |
Y= |
o |
cC |
O 0.4+ |
= | Clusters -
(@) |
© I
L 0.2 |
0.0 I

10t 10° 161 162 163 164 165 166 167 168 169 10%°
Ratio of Allocated/Needed Container Size

Current state of Key Decisions in SCOPE

Cluster Size

1.0

o
(o]
T

Cardinality
Query — NS aVrr é — Result

oooooo

o
(*)]
T

o
S
T

Containers

Fraction of Workload

o
[N)

O'O | | |
10t 10° 10t 10° 10°

Ratio of Allocated/Needed Cluster Size

Workload Challenges in SCOPE

- Large DAGs
+ 20% jobs have >50 operators; 3% have >500

- Large #tasks -

- 50% jobs have >100 tasks; 10% have >10K Cardinality é
— Result

- Structured + Unstructured data oNIAmdll Cost Model

oooooo

+ 40% jobs have unstructured inputs

- Shuffle more important than join
+ 5x more shuffles than joins Containers Clusters -

- Optimizing data movement
- 66% jobs have shuffle; 17% have >10 shuffle/job

- User defined operators
- 40% jobs with table UDFs; 15% with scalar UDFs

BlG DATA

Workloads

Large workloads =>Learn It Up!

O PyTorch
T TensorFlow

Global single-attribute correlations

EstCardinality
EstChildCardinality
EstCost
EstSubgraphCost
EstMaxParallelism

InputCardinality-0

JobPartitions
JobNodes
JoblnputSize
EstJobOutputSize
EstJobCost
EstJobDataShuffle
JobUDOs
Queuelength

Cardinality

Cost

Container Size

-0.001
-0.001
-0.001
N 0.734
-0.001
i 0.071
N 0.437
-0.026
-0.018l
-0.005 |
-0.005 |
Bo.119
e 0.825

- Workload diversity, complexity, evolution!

Cluster Size

Oops!

Learning Challenges

Scalability!
-- Accuracy!

Global

Workload = ‘ :> Model

Robustness! O Py-l-OrCh | @ Overheads!
T Tensorflow g}

Reg ressions! Containers Clusters -

M

|

FIERGREEN

VRN] A R e BRI SR T

A fine-grained learning approach

- Characterize workloads into smaller subsets

- ldentify and tag internal states as seen by the optimizer
- User them to characterize later on

- Learn specialized micromodels for each subset

- Targeted learning and feedback
- Divide and conquer to manage the cloud complexity

A fine-grained learning approach

100%
& 90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Cumulative Percentag

100%
& 90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Cumulative Percentag

-1

-0.8

-0.6

Container Size

-0.6

-0.4 -0.2 O 0.2 04 0.6 0.8
Correlation Coefficient

-0.4 -0.2 O 0.2 04 0.6 0.8
Correlation Coefficient

U

1

100%
- 90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Cumulative Percentag

100%
- 90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Cumulative Percentag

-1

Cost

-0.8

Cluster Size

-0.8

-0.6

-0.6

-0.4 -0.2 O 0.2 04 0.6 0.8
Correlation Coefficient

-0.4 -0.2 O 0.2 04 0.6 0.8
Correlation Coefficient

1

1

Building Production Confidence

- Preproduction Validation
- Identify the workload subset to experiment on
- Run and compare performance before/after

- Avoiding regressions
- Customer expectation: better or same performance
- Latency, total processing time, resources, etc.

- Dependencies
- What system version did the workload came from?
- What other models does a learned model depend on?

- Tracking

-+ When was it last trained?
- What input was it trained on?
- Can we purge the models trained on a given input?

- Retraining
- What is the right retrain interval?

Peregrine: more detailed view

User Tools (Scope Studio, Synapse Studio, Notebooks, Workload Repo)

System Developers / Operators
- Debugging experience

Data Admins / IT operations Data Users
- Operational decisions (view - Workload Insights Notebook

loc/retraining/costs/etc.) - Fine-grained enable / disable
- Org-wide control (enable global) - Explanations / Diagnostics

- Data science experience for data-
driven decisions

Serving Infra (SIS) Distributed System Infra (Managed clusters, Serverless)

System Context In-process Model Live Telemetry
(in-memory) Inference NS ERES

Feedback Actions Instrumentation

YA
Interface for
Model Auth,

Lookup,
Caching, and
Coordination

Annotations
Framework

System to Optimize

(e.g., SCOPE, Spark, SQL DW)

Model Management Deb
(deploy, troubleshoot) Signatures Framework (identifying internal states)

*

Workload IR + Algorithms (Python packages) + Scalable Analysis Infra (SCOPE, Spark, SQL DW) + Playback infra (flighting)

Data-parallel Workload Patterns

Asynchronous Dependency egression Preproduction training (massive (overlaps, similarities,

feedback Management Safeguard Validation

scale-out) dependencies)

Lifecycle management, e.g., versioning, tracking, operationalizing

o g

Researchers

- Data science experience for
new exploration

- Opportunities/overheads

*

Storage Infra (ADLS, Kusto, local)

Real-time
Derived data: Telemetry
Caches, (in-memory)
Views,
Indexes, Operational
Bloom filters, Telemetry
Sort orders, (local/SSDs)
Checkpoints,
Samples, Historical
Statistics Telemetry

(CEICREIG)

Data Unified Workload
Imputation Representation

CardLearner on Production Workloads

- Training
- 6 day of workload (~564K jobs)

- Recompile with the learned card models (~400K models)
- ldentify models causing plan changes (~52K models)

- Validation
-1 subsequent day of workload (~93K jobs)

- Filtering good models

- Avg. Baseline/Actual difference >= 100%
- Max. Validated/Actual difference <= 100%

- Avg. Validated/Actual difference <= 10% Training: ~6 hours (200 containers)
- Max. Validated/Predicted difference <= 1% Valldatlo.n: ~Thour (?00 containers)
. ~10K models Cumulative Model Size: 1.5MB

Towards a Learning Optimizer for Shared Clouds . Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi Qiao, Sriram Rao. VLDB 2019.

Model Accuracy

Baseline Acuracy Validation Acuracy
1.0 4 1.0 4
i i
n 0.8 n 0.8 r
[=1 =%
i @
[e
o o
4 0.6 4 0.6
3 3
wn un
k= k=
c 0.4 c 0.4
2 =2
T 1"
o o
w 0.2 w 0.2
I)
1
1 1
0.0 | 0.0 i
1 []
102 109 102 104 108 102 102 10 199 10! 10 10° 10¢ 10°
EstimatefActual Estimate/Actual

- 153M subexpressions

- 95t percentile Error
Baseline: 465711%; CardLearner: 1%

Pre-production Experiments

- 20K jobs could use the feedback

- 2518 pipelines flighted, 1282 with plan changes, 41 regressed (excluded)
- For 1241 pipelines, ~12K jobs/day
- Avg. improvement: 6.41% latency, 6.90% processing time, 8.29% containers

Processing Time Diff Latency Diff Containers Diff
40.00% 40.00% 40.00%

20.00% 20.00% 20.00%

0.00% 0.00% 0.00%

-20.00% -20.00% -20.00%

-40.00% -40.00% -40.00%
-60.00% -60.00% -60.00% ‘
-80.00% -80.00% -80.00%

-100.00% -100.00% -100.00%

Production Deployment

1400000
1200000 A

1000000

800000
Enabled
600000 |

400000

200000

O 2
B R %@Q R R %@Q %@Q S %@Q R R R %@Q C)Q,Q %@Q %@Q R o o
° \V N QU QT AN QTR DR

200000
180000
160000
140000
120000
100000
80000
60000
40000
20000
0

—Sum of TotalContainers

—Sum of Latency

Summary

 Cloud query engines have grown very sophisticated

« =>not easy to optimize

* We can leverage machine learning over massive cloud workloads
« =>not easy to build global models

« We present a fine-grained learning approach:

« Characterize workloads into subsets

« Learned micromodels over each subset

« Easy to scale training to very large workloads

« Smaller, cheaper models to score within the query engine

* We have built and deployed learned cardinalities in SCOPE

« Large number of steps to avoid performance regressions

* Long journey: 2017 (intern)-> 2018 (integration)-> 2019 (perf)-> 2020 (deploy)

B2 Microsoft

© Copyright Microsoft Corporation. All rights reserved.

