

Microlearner:

A fine-grained Learning Optimizer for Big Data Workloads at Microsoft

Alekh Jindal, Shi Qiao, Rathijit Sen, Hiren Patel

Microsoft

April 2021

Cloud Trends

- Managed Query Engines
 - Easy to get started: no setup/installation
 - · Serverless models: no resource provisioning
- Complex Workloads
 - Large and growing:
 Millions of queries, machines; Exabytes of data
 - Sophisticated:SQL + UDFs (Python, C#, Java) + ML ...
- ⇒Total cost of ownership (TCO) is important!
- ⇒Lots of moving parts!!
- ⇒Very hard to optimize!!!
- ⇒Lack of expertise; DBAs!!!!
- ⇒Tough cloud developer life!!!!!

Workload Challenges in SCOPE

- Large DAGs
 - · 20% jobs have >50 operators; 3% have >500
- Large #tasks
 - 50% jobs have >100 tasks; 10% have >10K
- · Structured + Unstructured data
 - · 40% jobs have unstructured inputs
- Shuffle more important than join
 - 5x more shuffles than joins
- Optimizing data movement
 - 66% jobs have shuffle; 17% have >10 shuffle/job
- User defined operators
 - · 40% jobs with table UDFs; 15% with scalar UDFs

Large workloads =>Learn It Up!

Global Model Workload => O PyTorch TensorFlow

Global single-attribute correlations

· Workload diversity, complexity, evolution!

.... Oops!

Learning Challenges

Scalability!

Workload =>

Robustness!

Accuracy!

Global Model

Regressions!

MICROMODELS

A fine-grained learning approach

- · Characterize workloads into smaller subsets
 - · Identify and tag internal states as seen by the optimizer
 - User them to characterize later on
- · Learn specialized *micromodels* for each subset
 - Targeted learning and feedback
 - Divide and conquer to manage the cloud complexity

A fine-grained learning approach

Building Production Confidence

- Preproduction Validation
 - · Identify the workload subset to experiment on
 - · Run and compare performance before/after
- Avoiding regressions
 - · Customer expectation: better or same performance
 - · Latency, total processing time, resources, etc.
- Dependencies
 - · What system version did the workload came from?
 - · What other models does a learned model depend on?
- Tracking
 - · When was it last trained?
 - What input was it trained on?
 - · Can we purge the models trained on a given input?
- Retraining
 - · What is the right retrain interval?

Peregrine: more detailed view

CardLearner on Production Workloads

Training

- 6 day of workload (~564K jobs)
- Recompile with the learned card models (~400K models)
- Identify models causing plan changes (~52K models)

Validation

- 1 subsequent day of workload (~93K jobs)
- Filtering good models
 - Avg. Baseline/Actual difference >= 100%
 - Max. Validated/Actual difference <= 100%
 - Avg. Validated/Actual difference <= 10%
 - Max. Validated/Predicted difference <= 1%
 - · ~10K models

Training: ~6 hours (200 containers)
Validation: ~1hour (200 containers)
Cumulative Model Size: 1.5MB

Model Accuracy

- 153M subexpressions
- 95th percentile Error Baseline: 465711%; CardLearner: 1%

Pre-production Experiments

- · 20K jobs could use the feedback
- · 2518 pipelines flighted, 1282 with plan changes, 41 regressed (excluded)
- For 1241 pipelines, ~12K jobs/day
- · Avg. improvement: 6.41% latency, 6.90% processing time, 8.29% containers

Production Deployment

Summary

- Cloud query engines have grown very sophisticated
 - => not easy to optimize
- We can leverage machine learning over massive cloud workloads
 - => not easy to build global models
- We present a fine-grained learning approach:
 - Characterize workloads into subsets
 - Learned micromodels over each subset
 - Easy to scale training to very large workloads
 - Smaller, cheaper models to score within the query engine
- We have built and deployed learned cardinalities in SCOPE
 - Large number of steps to avoid performance regressions
- Long journey: 2017 (intern)-> 2018 (integration)-> 2019 (perf)-> 2020 (deploy)

