
Magpie
Python at Speed and Scale
using Cloud Backends

Alekh Jindal, K. Venkatesh Emani, Maureen Daum, Olga Poppe,
Brandon Haynes, Anna Pavlenko, Ayushi Gupta, Karthik Ramachandra,
Carlo Curino, Andreas Mueller, Wentao Wu, Hiren Patel

Gray Systems Lab, Microsoft
Azure Data, Microsoft
Microsoft Research
University of Washington

The Python and The Cloud

• De-facto for ad-hoc analysis
• Pandas dataframes highly popular
• Performance is a challenge

+
• Hyper-scale performance
• Several SQL processing backends
• Enterprise data already on cloud

The current landscape … is a fragmented jungle!

PySparkNvidia
RAPIDS

RayDask

NumPy
Arrays

DASK
Dataframe

PySpark
Dataframe

Ray
Programs

Cuda
Dataframe

Backends

Data
Layer

APIs

Higher-level
Abstractions

Ibis

Vaex
Dataframe

Native
Python

Distributed

Microsoft
SCOPE

Apache
MADlib

Google
BigQuery

Apache
Spark PostgreSQL Microsoft

SQL Server

SQL +
Built-in

Functions
SQL ExtensionsSQL + User Defined Functions

Azure
Synapse
Analytics

Relational Tables

Extending Python ecosystem Extending SQL databases

Magpie

Microsoft
SCOPE

Apache
MADlib

Database
Backends

Unified Dataframe API

Pythonic Environment

Cross Optimization

Common Data Layer

Magpie
Middleware

PyFroid Compiler

PostgreSQL

Polyengines
& Mappers Native

Python

Apache
Spark Google

BigQuery

Azure Synapse
Analytics

SQL Server

Familiar Python surface

Ongoing standardization

Cloud backends

Multi-backend
environments and libraries

Batching Pandas into large
query expressions

Backend selection using
past workloads

Cache commonly seen
dataframes

Batching Pandas

‘week_day’=

‘nyctaxi’

SELECTION

PREDICATES

GREATER [boolean]

COL [float32*] LITERAL [float32]

‘fare_amount’ 0

SELECTION

EXTR. WEEKDAY[i32*]

COL [timestamp]

‘pickup_datetime’

AGGREGATION

BY

COL [i32*]

‘week_day’

METRICS

SUM [i64]

COL [i32*]

‘passenger_count’

Pandas Dataframe Program

Intermediate Representation

Ibis API

Ibis Expression

Lazy
Translation

Pandas

Blue parts: already in IBIS, Green parts: our contributions

The number of taxi trips per weekday
over the NYC Taxi dataset

1 import pyfroid.pandas as pd # vs import pandas as pd
2 df = pd.read_sql(‘nyctaxi’, con) # fetch data
3 df = df[df.fare_amount > 0] # filter bad rows
4 df[‘day’] = df.pickup_datetime.dt.dayofweek # add features
5 df = df.groupby([‘day’])[‘passenger_count’].sum() # aggregation
6 print(df) # use dataframe

Pushing Data Science down

SQL

Postgres MySQL

Spark Pandas ...

... SQL DW SCOPE
Cloud
backends

‘week_day’=

‘nyctaxi’

SELECTION

PREDICATES

GREATER [boolean]

COL [float32*] LITERAL [float32]

‘fare_amount’ 0

SELECTION

EXTR. WEEKDAY[i32*]

COL [timestamp]

‘pickup_datetime’

AGGREGATION

BY

COL [i32*]

‘week_day’

METRICS

SUM [i64]

COL [i32*]

‘passenger_count’

T-SQL Statement

SELECT
(Cost: 0%)

Group by
Aggregates

Shuffle
(Cost: 100%)

Group by
Aggregates

Project Filter Get

SQL DW Execution PlanBlue parts: already in IBIS, Green parts: our contributions

Ibis API

Ibis Expression

Lazy
Translation

Pandas

SELECT DATEPART(WEEKDAY, pickup_datetime) AS day,
SUM(passenger_count)

FROM nyctaxi WHERE fare_amount > 0
GROUP BY DATEPART(WEEKDAY, pickup_datetime)

Pushing Data Science down

SQL

Postgres MySQL

Spark Pandas ...

... SQL DW SCOPE
Cloud
backends

‘week_day’=

‘nyctaxi’

SELECTION

PREDICATES

GREATER [boolean]

COL [float32*] LITERAL [float32]

‘fare_amount’ 0

SELECTION

EXTR. WEEKDAY[i32*]

COL [timestamp]

‘pickup_datetime’

AGGREGATION

BY

COL [i32*]

‘week_day’

METRICS

SUM [i64]

COL [i32*]

‘passenger_count’

Blue parts: already in IBIS, Green parts: our contributions

Ibis API

Ibis Expression

Lazy
Translation

Pandas

df = script.extract(path, schema)
.select("fare_amount > 0")
.groupby("day")
.project("pickup_datetime

.DayOfWeek.ToString() AS day",
"passenger_count")

SCOPE
Script

SCOPE Execution Plan

Impact: speed-up using SQL DW

0
5

10
15
20
25

10k 100k 1m 5m 10m

Sp
ee

d
up

Number of rows

0
5

10
15
20
25

1 2 3 4

Sp
ee

d
up

Number of joins

X

Growing input size Growing query complexity

1.4x to 20x speedup 7x to 380x speedup

Impact: scale-out using SCOPE

Scale data science to big data! SCOPE vs Spark
Spark Wins SCOPE Wins

Magpie

Microsoft
SCOPE

Apache
MADlib

Database
Backends

Unified Dataframe API

Pythonic Environment

Cross Optimization

Common Data Layer

Magpie
Middleware

PyFroid Compiler

PostgreSQL

Polyengines
& Mappers Native

Python

Apache
Spark Google

BigQuery

Azure Synapse
Analytics

SQL Server

Familiar Python surface

Ongoing standardization

Cloud backends

Multi-backend
environments and libraries

Batching Pandas into large
query expressions

Backend selection using
past workloads

Cache commonly seen
dataframes

Backend Selection

SQL

Postgres MySQL

Spark Pandas ...

... SQL DW SCOPE
Cloud
backends

Blue parts: already in IBIS, Green parts: our contributions

Lazy
Translation

Pandas

Backend Selection

Ibis Expression

Ibis API

Cost-based
optimization

� Leverage past
workloads from cloud
backends to learn a
decision tree

� At compile time:
� User provides the list of

available backends
� Compile the plan into a

common representation
� Infer best backend using the

decision tree

Scenario 1: Pandas vs PySpark

� Question:
� When to switch to a cluster?
� Or to local execution?

� Decision tree:
� 84% accuracy on test set
� On Pandas:

� 84% median improvement
� Up to 99% improvement

∑ Estimate(Range Cardinality) ≤ 264𝐾

∑ Estimate(Range Cardinality) ≤ 167𝑀

∑ Sort Input Cardinality ≤ 6𝑀

Either
gini = 0.22
𝑛 = 39

True False

True

False

Pandas
gini = 0.23
𝑛 = 86

Spark
gini = 0.09
𝑛 = 41

∑ Estimate(Filter Cardinality) ≤ 171𝐾

∑ Estimate(Filter Cost) ≤ 852

Spark
gini = 0.33
𝑛 = 19

Pandas
gini = 0.5
𝑛 = 33

Either
gini = 0.29
𝑛 = 18

False

True
True

False

FalseTrue

Scenario 2: PyScope vs PySpark

� Cosmos has both SCOPE and Spark engines now
� Question: which one to use for data science?
� Decision tree
� 87% accuracy on test set
� On Spark:

� Median improvement 85%
� Up to 98% improvement

∑ Estimate(Range Cardinality) ≤ 72.6M

∑ Estimate(Cost) ≤ 54𝐾

∑ Mean(Row Length) ≤ 172

Either
gini = 0.44
𝑛 = 25

SCOPE
gini = 0.28
𝑛 = 12

SCOPE
gini = 0.15
𝑛 = 72

Spark
gini = 0.31
𝑛 = 173

True False

True

True False

False

Magpie

Microsoft
SCOPE

Apache
MADlib

Database
Backends

Unified Dataframe API

Pythonic Environment

Cross Optimization

Common Data Layer

Magpie
Middleware

PyFroid Compiler

PostgreSQL

Polyengines
& Mappers Native

Python

Apache
Spark Google

BigQuery

Azure Synapse
Analytics

SQL Server

Familiar Python surface

Ongoing standardization

Cloud backends

Multi-backend
environments and libraries

Batching Pandas into large
query expressions

Backend selection using
past workloads

Cache commonly seen
dataframes

Common Data Layer

SQL

Postgres MySQL

Spark Pandas ...

... SQL DW SCOPE
Cloud
backends

Blue parts: already in IBIS, Green parts: our contributions

Lazy
Translation

Pandas

Backend Selection

Ibis Expression

Ibis API

Cost-based
optimization

Dataframe cache

� Dataframe cache
� Generate unique signatures
� Store repeated dataframes in

ArrowFlight server
� Skip accessing the backend in

case of cache hit

Interactive
experience

1

100

10000

100K 1M 10M

Sp
ee
du

p

Input size (rows)

Cached Results
Cached Data
Hot & Cold Data 2-3x

4-11x
800-3800x

Summary

Database
Backends

Unified Dataframe API

Pythonic Environment

Magpie
Middleware

Polyengines
& Mappers

Pandas Without Regret!
Write once, execute anywhere
Abstracting Data Processing
Complexity

Lingua franca for many analyses

Increasingly getting standardized

Hyperscale performance
Data already in the cloud

From polystores to polyengines
Native
Python

https://azuredata.microsoft.com/

Gray
Systems
Lab

Hiring Summer Interns!

https://azuredata.microsoft.com/

© Copyright Microsoft Corporation. All rights reserved.

