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The Python and The Cloud

• De-facto for ad-hoc analysis
• Pandas dataframes highly popular
• Performance is a challenge

+
• Hyper-scale performance
• Several SQL processing backends
• Enterprise data already on cloud



The current landscape … is a fragmented jungle!
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Batching Pandas

‘week_day’=

‘nyctaxi’
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Pandas Dataframe Program

Intermediate Representation

Ibis API

Ibis Expression

Lazy 
Translation

Pandas

Blue parts: already in IBIS, Green parts: our contributions

The number of taxi trips per weekday 
over the NYC Taxi dataset

1 import pyfroid.pandas as pd # vs import pandas as pd
2 df = pd.read_sql(‘nyctaxi’, con)  # fetch data
3 df = df[df.fare_amount > 0]  # filter bad rows
4 df[‘day’] = df.pickup_datetime.dt.dayofweek # add features
5 df = df.groupby([‘day’])[‘passenger_count’].sum()    # aggregation
6 print(df)  # use dataframe



Pushing Data Science down
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SELECT DATEPART(WEEKDAY, pickup_datetime) AS day,  
SUM(passenger_count)

FROM nyctaxi WHERE fare_amount > 0
GROUP BY DATEPART(WEEKDAY, pickup_datetime)



Pushing Data Science down
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‘week_day’=

‘nyctaxi’

SELECTION

PREDICATES

GREATER [boolean]

COL [float32*] LITERAL [float32]

‘fare_amount’ 0

SELECTION

EXTR. WEEKDAY[i32*]

COL [timestamp]

‘pickup_datetime’

AGGREGATION

BY
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‘week_day’

METRICS
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Blue parts: already in IBIS, Green parts: our contributions

Ibis API

Ibis Expression

Lazy 
Translation
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df = script.extract(path, schema)
.select("fare_amount > 0")
.groupby("day")
.project("pickup_datetime

.DayOfWeek.ToString() AS day",
"passenger_count")

SCOPE 
Script

SCOPE Execution Plan



Impact: speed-up using SQL DW
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Impact: scale-out using SCOPE

Scale data science to big data! SCOPE vs Spark
Spark Wins SCOPE Wins
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Backend Selection
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� Leverage past 
workloads from cloud 
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decision tree

� At compile time:
� User provides the list of 

available backends
� Compile the plan into a 

common representation
� Infer best backend using the 

decision tree



Scenario 1: Pandas vs PySpark

� Question: 
� When to switch to a cluster?
� Or to local execution?

� Decision tree:
� 84% accuracy on test set
� On Pandas:

� 84% median improvement
� Up to 99% improvement

∑ Estimate(Range Cardinality) ≤ 264𝐾

∑ Estimate(Range Cardinality) ≤ 167𝑀

∑ Sort Input Cardinality ≤ 6𝑀

Either
gini = 0.22
𝑛 = 39

True False

True

False

Pandas
gini = 0.23
𝑛 = 86

Spark
gini = 0.09
𝑛 = 41

∑ Estimate(Filter Cardinality) ≤ 171𝐾

∑ Estimate(Filter Cost) ≤ 852

Spark
gini = 0.33
𝑛 = 19

Pandas
gini = 0.5
𝑛 = 33

Either
gini = 0.29
𝑛 = 18

False

True
True

False

FalseTrue



Scenario 2: PyScope vs PySpark

� Cosmos has both SCOPE and Spark engines now
� Question: which one to use for data science?
� Decision tree
� 87% accuracy on test set
� On Spark:

� Median improvement 85%
� Up to 98% improvement

∑ Estimate(Range Cardinality) ≤ 72.6M

∑ Estimate(Cost) ≤ 54𝐾

∑ Mean(Row Length) ≤ 172

Either
gini = 0.44
𝑛 = 25

SCOPE
gini = 0.28
𝑛 = 12

SCOPE
gini = 0.15
𝑛 = 72

Spark
gini = 0.31
𝑛 = 173

True False

True

True False

False
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Common Data Layer
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Dataframe cache

� Dataframe cache
� Generate unique signatures
� Store repeated dataframes in 

ArrowFlight server
� Skip accessing the backend in 

case of cache hit

Interactive 
experience
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Summary

Database 
Backends

Unified Dataframe API

Pythonic Environment

Magpie 
Middleware

Polyengines
& Mappers

Pandas Without Regret!
Write once, execute anywhere
Abstracting Data Processing 
Complexity

Lingua franca for many analyses

Increasingly getting standardized

Hyperscale performance
Data already in the cloud 
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Native 
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