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Rise of Big Data Systems

Hive
Spark
Flink
Calcite
BigQuery
Big SQL
HDInsight
SCOPE
Etc.

Declarative query interface
Cost-based query optimizer (CBO)

SELECT Customer.cname, Iltem.iname
FROM Customer

INNER JOIN Order
ON Customer.cid == Order.cid
INNER JOIN Item

ON Item.iid == Order.iid
WHERE Item.iprice > 100
AND Customer.cage < 18;

Good plan => Good performance
Problem: CBO can make mistakes
esp. Cardinality Estimation



Rise of Big Data Systems

. The root of all evil, the Achilles Heel of query optimization,
Hive | orar chies .
is the estimation of the size of intermediate results, known

Spa rk as cardinalities. — [Guy Lohman, SIGMOD Blog 2014]
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Rise of Big Data Systems

Hive

Spark

Flink

e TUNING!
B!gQuery Collecting Statistics

Big SQL Providing Query Hints
HDInsight Database Administration
SCOPE

Etc.



Rise of the Clouds
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Rise of the Clouds
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Hope: Shared Cloud Infrastructures

DATA

SYSTEM

Shared data processing

Massive volumes of query logs Centrally visible query workload



Cosmos: shared cloud infra at Microsoft
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e SCOPE Workloads:

* Batch processing in a job service
* 100Ks jobs; 1000s users; EBs data; 100Ks nodes

e Cardinality estimation in SCOPE:
e 1 day’s log from Asimov . .
* Lots of constants for best effort estimation 1010 10% 107 10° 10" 10% 10° 10% 10° 10°
* Big data, unstructured Data, custom code FetimatefActual Cardinally Raio

* Workload patterns QJ/¥ 0
* Recurring jobs /\

e Shared query subgraphs | e .

rrrrr

* Can we learn cardinality models? BT 5
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Learning Cardinality Model

e Strict: cache previously seen values Subgraph |Llogical | Parameter | Data
« Low coverage Type Expression | Values Inputs
* Online feedback Strict Fixed Fixed Fixed

* General: Iearning d Single mOdeI General Variable Variable Variable
* Hard to featurize
* Hard to train
* Prediction latency
* Low accuracy

Template  Fixed Variable Variable

* Template: learning a model per subgraph template
=> No one-size-fits-all



Learned Cardinality Models

* Subgraph Template:
e Same logical subexpression
 Different physical implementation
 Different parameters and inputs

* Feature Selection

* Model Selection

e Generalized liner models due to their
interpretability

* More complex models, such as multi-
layer perceptron harder to train

Filter Filter
Age <18 Age < 20
% Order % Order’
Customer Customer’

Name Description
JobName Name of the job containing the subgraph
NormJobName Normalize job name
InputCardinality Total cardinality of all inputs to the subgraph

Pow(InputCardinality, 2)

Square of InputCardinality

Sqrt(InputCardinality )

Square root of InputCardinality

Log(InputCardinality )

Log of InputCardinality

AvgRowLength Average output row length

InputDataset Name of all input datasets to the subgraph
Parameters One or more parameters in the subgraph
Madd Percentage Errer | Pearsen Cerrelation

Defanalt Optitrencs 2198454 04)
Adpsissent Factor (LE0) 3k B3 IR]
Linear Regression 11582 0499
Newral Nelwork ¥2)S U 9%
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Poisson Regress




Accuracy: 10-fold cross validation
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Applicability: %tage subgraphs having models

Varying Training Window
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End-to-end Feedback Loop

Query

Annotation hints  cardinality

Easy to featurize with low overhead

Accurate and easy to understand

Model Lookup & Predlctlon

to the query Models
optimizer /_lj
Model
Server
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Parallel Workload
Trainer Analyzer
L )

Result

-
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Complled Optimized plans &  Execution graphs Actual runtime
Kquery DAGs estimated statistics & resources statistics

)

Trained offline over new batches of data

Large number of smaller, highly accurate models




Latency (s)

Performance

e Subset of hourly jobs from Asimov
* These queries process unstructured data, use SPJA operators, and a UDO

* Re-ran the queries over same production data, but with redirected output
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Avoiding Learning Bias

Actual:100 Actual:100 Actual:100

* Learning only what is seen

* Exploratory join ordering
* Actively try different join orders

* Pruning: discard plans with subexpressions that are more expensive than at
least one other plan

* Maximize new observations when comparing plans

* Execution strategies
* Static workload tuning
* Using sample data
* Leveraging recurring/overlapping jobs



Takeaways

* Big data systems increasingly use cost-based optimization

* Users cannot tune these systems in managed/serverless services
* Hard to achieve a one-size-fits-all query optimizer

* Instance optimized systems are more feasible

* \Very promising results from SCOPE workloads:
* Could achieve very high accuracy
* Reasonably large applicability, could further apply exploration
* Performance gains, most significant being less resource consumption

* Learned cardinality models a step towards self-learning optimizers



