Peregrine: workload optimization
for cloud query engines™

Alekh Jindal
Gray Systems Lab

M= Microsoft

* Peregrine: Workload Optimization for Cloud Query Engines. Alekh Jindal, Hiren Patel, Abhishek Roy, Shi Qiao, Jarod Yin, Rathijit Sen, Subru Krishnan. SOCC 2019.

N

N7 N

=

On-Premise

Need to reach by 10,
can we drive faster?

Cloud Query Engines

e Setup, installation, maintenance taken care of
* On-demand provisioning, pay as you go

Need to reach by 10,
can we drive faster?

Sorry, we don’t

have a DBA

.J

Reality Check for providers: Reality Check for customers:

 System developers == virtual DBAS! * Lots of services to choose from (even within Azure, GCP, AWS)

« Too many cloud users, compared to system developers * Lot of knobs to tune for good perf and low cost

* Lack of control; and lack of expertise
And, the DBA is gone!

* Too many support requests; often redundant

* Less time for feature development

\

Cosmos: big data infra at Microsoft

* 100s of thousands of machines

* Exabytes of data at rest; Petabytes ingress/egress daily
* 500k+ batch jobs / day

* 3B+ tasks executed / day

* 10s of millions interactive queries / day

* 10s of thousands of SCOPE developers

¢ 1000S Of tea MmSs CRM/Dynamics B i n g
Yammer

WINndows ..
EXCha ﬂge Microsoft Stol;e ’ XbOX

STB Commerce RiskSkype OﬁICeg 6 5

STB Malware Protection

The missing DBA and the growing pain in Cosmos

* Large number of knobs/hints at script, data, plan level

* Only few expert users
* Rest need guidance

* Survey: better tooling for improving SCOPE queries

e Support challenge
* 10s of thousands incidents / years
* 10 incidents per system developer on call

* 100x users compared to system developers
e ~10% growth in SCOPE workload in 2019

. CRM/Dynamics B I n g
Yammer
WlndOWS I_egal XbOX

EXCha nge Microsoft Store .
STB Commerce RiskSkype Ofﬂ C@B 6 5

STB Malware Protection

On-premise pain -> Cloud pain

The cloud opportunity

Developers a 8 a 8 a

Database Vendor

Customer 1

-

Workload Workload

Users 8 8 » Users 8 8

Workload

Users 8 8 8

Fragmented on-premise workloads

Massive cloud workloads

Workload
> > >

Date Services

- 888888888

The Cosmos opportunity

Massive cloud workloads

Job metadata
name, user, account, submit/start/end times

Workload
> > >

Date Services

Query plans
logical, physical, stage graph, estimates

Several TBs of

Runtime statistics -
metadata / day

Operator-wise observables

Task level logs
start/end events

Machine counters Users é 9 9 9 9 9 9 9 9

CPU, 10, etc.

—

The case for a workload optimization platform

* DBA-as-a-Service
* Another service in the cloud (easier integration)
* Based on cloud workloads at hand (instance optimization)

* Engine agnostic
* Not specific to different query engines, e.g., SCOPE, Spark, SQL DW, or etc.
* E.g., view selection is still the same problem

* Global optimizations
* Cloud workloads are organized into data pipelines
* People often care about end-to-end aggregate costs in the cloud

X oi&.‘
el Yy

rkloéd cha

Engine-agnostic workload representation

Signatures —»

N I

......................................

Anonymized () (O =) U N N
Loglcal plan Phy5|cal plan Stage graph Tasks
Log + metrlcs) » Log+ metrlcs < > Log + metrics <« > Log + metrics

Denormalized view
(Workload IR)

S i
C
S
O,
-
4+
Q0]
Q.
S
O
gy—
O,
N
-
+—
o
O
ﬁ./m
Q.
O,
4+
V)

Typical workload patterns

e Consider a simplified 2D space of data and queries

Queries] Queries Queries
Recurring Similarity Dependency
Query templates appear Queries over same Queries depend on datasets

over newer datasets datasets have similarities produced by previous queries

Recurring pattern

Data

Queries

Recurring

Query templates appear
over newer datasets

* Majority of production workloads

* There is a regular ETL needed before other
things can happen

* Opportunity to learn from the past

* Examples
* Learned cardinality
* Learned cost models
e Learned resources
* Learned etc.

Recap from NWDS’19

SCOPE Cardinality Estimation

o
(@ o IR Y

Under- Over-

o
o

estimation estimation

o
I

Fraction of Subgraphs
o
N

0
104102102 10" 10° 10" 10% 10° 10* 10° 10
Estimate/Actual Cardinality Ratio

6

Recap from NWDS’19

SCOPE Cardinality Estimation

o1 1

.g_ 09 ¢

© 0.8 0.8 |

S 07 |

c/:S 06 Under- Over- 0.6 Neural Network

— estimation estimation 0.5 | Linear Regression

° 04 0.4 isson Regression

S 0.3 |

g 0.2 0.2 +

i ; 0.8 : -, ‘ ‘ ‘ ‘
104102102107 10° 10" 10% 10® 10* 10° 10° 10% 10%* 102 10° 10° 10* 10% 108

Estimate/Actual Cardinality Ratio Estimated/Actual Cardinality Ratio

Towards a Learning Optimizer for Shared Clouds.
Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi Qiao, Sriram Rao. VLDB 2019.

SCOPE Cost Estimation

* Costs models are orders of magnitude off!

=
o

ideal

o
(o]

o
o

o
»

Under Estimation d Over Estimation

o
N

Fraction of Operators (CDF)

0.0
103 102 10! 10° 101 102 103
Estimated/Actual

SCOPE Cost Estimation

* Costs models are orders of magnitude off!

Manually tuned cost model Feeding perfect cardinalities
51.0 ideal
go o * Pervasive use of user defined functions
:%Zj « Complexity of big data systems
2 | undercstimation 7 over estmtin e Variance in the cloud environments
E 0.0

103 102 10! 10° 101 102 103
Estimated/Actual

Why cardinality is not enough?

* Incrementally add features el \
L 80 -
L] (0] o) c 60 -
Error drops from 110% to 40% S o —
oy s . O 20-
* Additional transformations needked = ..
T Ot ERZZESPPYYOSEE0580Y 5580590
* Hard to come up with such heuristics B g §25E283°058328
Set 1 Set 2
* Two sets of hash join instances 5
o Wv
. . N2 0.2
* Different feature weights TEU%Ol
: .. 53
* Hard to instance optimize manually 2
0.0 - _
@ ~ S o 3 o o m

sqrt(C)

Ensemble of Models over Recurring Patterns

Operator-subgraph Operator-subgraphApprox Operator-inputs Operator

oG oen

no coverage no coverage || __No coverage | =

Op-Subgraph Op—Subgrappprox Oplnput Opor Combined

SCOPE Cost Estimation

* Can learn pretty accurate cost models!

=
o

o
o

o
o

o
EN

Under Estimation

Fraction of Operators (CDF)
©
N

o
o

ideal

Over Estimation

10-3 1072 10°!

100

10!

Estimated/Actual

102

10°

1.00+

0.751

CDF of Operators
o
Ul
o

0.251

0.00+

—— Operator-Subgra
—— Operator-Input

—— Default

Operator-Subgra

Operator
Combined

1073

102 1071 109 101! 102
Estimated/Actual

Cost Models for Big Data Query Processing: Learning, Retrofitting, and Our Findings.
Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, Wangchao Le. SIGMOD 2020 (to appear).

103

Similarity pattern

* Very typical in multi-user shared cloud
environments
* Cosmos, HDI, Ant Financial, ML workflows, etc.

Data
y

e Opportunity for multi-query optimization

Yy VvV VvV N

. * SCOPE compute reuse

. 100
Queries Overlapping jobs =—=

Users with overlapping jobs

. . . 80 [Overlapping subgraphs
Similarity ol
Queries over same 0l
datasets have similarities
20 b
0

clus er1 clus er2 clus er3 clus er4 clus erb

Percentage

Computation Reuse in Analytics Job Service at Microsoft.
Alekh Jindal, Shi Qiao, Hiren Patel, Jarod Yin, Jieming Di, Malay Bag, Marc Friedman, Yifung Lin, Konstantinos Karanasos, Sriram Rao. SIGMOD 2018.

Spark Compute Reuse

* Instrument application log 20-
* Analyze common subexpressions
over Spark SQL plans s
* Optimizer rules to automatically 23
materialize/reuse in future queries 52 vofr-—{fr-—-
* Almost 30% improvement in total &3
time on TPC-DS 05
0.0 -+ | H

SparkCruise: Handsfree Computation Reuse in Spark.
Abhishek Roy, Alekh Jindal, Hiren Patel, Ashit Gosalia, Subru Krishnan, Carlo Curino. VLDB 2019 (Demo).

TPC-DS Queries

Step 3: feeding it back
———

ke

g * Insights =
* Recommendations .. i
—

Aﬁ_e,l.ftum‘n?

!, !! .
g

,:\ p

= |

= {

your comfort

Reseryved for

Austrian 7~

llustration: Scope and Spark query engines

.)
SCOPE {Optimizer Rulel: Online materialize]

Compiler Optimizer Rule2: Computation Reuse
flags l
Query Engine \\|
8 Scheduler gVl Runtime JEENTIL

(%)

C

9 Workload Repository SCOPE
m AAAAAA
4 l e Spark
(>]<) Enumerators

o]

=)

(V]

Cardinality Query Subexpressions IR

Peregrine

Peregrine Summary

e Easier to add newer features
e Easier to add newer engines

* Easier for people to participate
* Researchers, developers, interns
e Abstracts the painful steps
* Build on top of each other
* Focus on workload optimizations

* Gray Systems Lab: aka.

AN

—— o Workload-aware i

s ——
Spark B QueryEngines
/ l \ Ingest
/ Signatures

Metadata Plans Statistics \

Query Plan T ’/‘/me

Feature Store

@ Enumerate

Instrumentation

K Workload Intermediate Representation (IR) <> Ej /

JL dL potterms g

ms/gsl

/ Sharing Recurring Coordinating ... \
Mathematical Solvers Machine Learning Graph Analytics
Multi-query Optimization, Learned optimizations, Dependency-driven optimizations,
{.g., CloudViews e.g., Learned Cardinality ~ e.g., physical design for pipeline/
@ @ Feedback @

4 Insich . .)
nsights Recommendations Self-tuning
Dashboard\\“\\ A lerts Query Annotations

A A y

_ Users Feedback Service)

https://aka.ms/gsl

