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DBA

On-Premise
Need to reach by 10, 
can we drive faster?

Sure!



Cloud Query Engines

• Setup, installation, maintenance taken care of
• On-demand provisioning, pay as you go



Cloud Query Engines Need to reach by 10, 
can we drive faster?

Sorry, we don’t 

have a DBA

Reality Check for customers:

• Lots of services to choose from (even within Azure, GCP, AWS)

• Lot of knobs to tune for good perf and low cost

• Lack of control; and lack of expertise

• And, the DBA is gone!

Reality Check for providers:

• System developers == virtual DBAs!

• Too many cloud users, compared to system developers

• Too many support requests; often redundant

• Less time for feature development

.. ahhh!



Cosmos: big data infra at Microsoft

• 100s of thousands of machines
• Exabytes of data at rest; Petabytes ingress/egress daily
• 500k+ batch jobs / day
• 3B+ tasks executed / day
• 10s of millions interactive queries / day
• 10s of thousands of SCOPE developers
• 1000s of teams



The missing DBA and the growing pain in Cosmos

• Large number of knobs/hints at script, data, plan level
• Only few expert users
• Rest need guidance
• Survey: better tooling for improving SCOPE queries

• Support challenge
• 10s of thousands incidents / years
• 10 incidents per system developer on call
• 100x users compared to system developers
• ~10% growth in SCOPE workload in 2019



Cloud pain
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The cloud opportunity

Workload

Workload Workload Workload

Fragmented on-premise workloads

Massive cloud workloads



The Cosmos opportunity

Workload

Massive cloud workloads
Job metadata

name, user, account, submit/start/end times

Query plans
logical, physical, stage graph, estimates

Runtime statistics
Operator-wise observables

Task level logs
start/end events

Machine counters
CPU, IO, etc.

Several TBs of 
metadata / day



The case for a workload optimization platform

• DBA-as-a-Service
• Another service in the cloud (easier integration)
• Based on cloud workloads at hand (instance optimization)

• Engine agnostic
• Not specific to different query engines, e.g., SCOPE, Spark, SQL DW, or etc.
• E.g., view selection is still the same problem

• Global optimizations
• Cloud workloads are organized into data pipelines
• People often care about end-to-end aggregate costs in the cloud



Step 1: workload representation
Instrument, log, and collect workload characteristics



Engine-agnostic workload representation

Logical plan Physical plan Stage graph Tasks

Signatures

Denormalized view

Anonymized

(Workload IR)

Log + metrics Log + metrics Log + metrics Log + metrics



Step 2: optimize for patterns



Typical workload patterns

• Consider a simplified 2D space of data and queries
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Query templates appear 
over newer datasets

Queries over same 
datasets have similarities

Queries depend on datasets 
produced by previous queries



Recurring pattern

• Majority of production workloads
• There is a regular ETL needed before other 

things can happen

• Opportunity to learn from the past
• Examples
• Learned cardinality
• Learned cost models
• Learned resources
• Learned etc.

Queries Queries Queries

Da
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(a) Recurring (b) Similarity (c) DependencyRecurring
Query templates appear 
over newer datasets



SCOPE Cardinality Estimation

Under-
estimation

Over-
estimation

Ideal

Recap from NWDS’19

CARDINALITY ESTIMATION
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Recap from NWDS’19

Towards a Learning Optimizer for Shared Clouds. 
Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi Qiao, Sriram Rao. VLDB 2019.



SCOPE Cost Estimation

• Costs models are orders of magnitude off!

b) Default Cost Model c) Manually Improved Cost Model d) Cost Models with Cardinality Feedback
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SCOPE Cost Estimation

• Costs models are orders of magnitude off!

b) Default Cost Model c) Manually Improved Cost Model d) Cost Models with Cardinality Feedback

Model Pearson 
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a) Correlation

• Pervasive use of user defined functions
• Complexity of big data systems
• Variance in the cloud environments

Manually tuned cost model Feeding perfect cardinalities



Why cardinality is not enough?

• Incrementally add features
• Error drops from 110% to 40%
• Additional transformations needed
• Hard to come up with such heuristics

• Two sets of hash join instances
• Different feature weights
• Hard to instance optimize manually



Ensemble of Models over Recurring Patterns
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SCOPE Cost Estimation

• Can learn pretty accurate cost models!

b) Default Cost Model c) Manually Improved Cost Model d) Cost Models with Cardinality Feedback
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a) Correlation

Cost Models for Big Data Query Processing: Learning, Retrofitting, and Our Findings.
Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, Wangchao Le. SIGMOD 2020 (to appear).



Similarity pattern

• Very typical in multi-user shared cloud 
environments
• Cosmos, HDI, Ant Financial, ML workflows, etc.

• Opportunity for multi-query optimization
• SCOPE compute reuse

Queries Queries Queries
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(a) Recurring (b) Similarity (c) DependencySimilarity
Queries over same 
datasets have similarities
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ABSTRACT
Analytics-as-a-service, or analytics job service, is emerging as a
new paradigm for data analytics, be it in a cloud environment or
within enterprises. In this setting, users are not required to manage
or tune their hardware and software infrastructure, and they pay
only for the processing resources consumed per job. However, the
shared nature of these job services across several users and teams
leads to significant overlaps in partial computations, i.e., parts of
the processing are duplicated across multiple jobs, thus generating
redundant costs. In this paper, we describe a computation reuse
framework, coined CloudViews, which we built to address the
computation overlap problem in Microsoft’s SCOPE job service. We
present a detailed analysis from our production workloads to moti-
vate the computation overlap problem and the possible gains from
computation reuse. The key aspects of our system are the follow-
ing: (i) we reuse computations by creating materialized views over
recurring workloads, i.e., periodically executing jobs that have the
same script templates but process new data each time, (ii) we select
the views to materialize using a feedback loop that reconciles the
compile-time and run-time statistics and gathers precise measures
of the utility and cost of each overlapping computation, and (iii) we
create materialized views in an online fashion, without requiring
an offline phase to materialize the overlapping computations.
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1 INTRODUCTION
1.1 Background
There is a recent trend of offering analytics-as-a-service, also re-
ferred to simply as job service, by major cloud providers. Examples
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Figure 1: Computation Overlap in different production clus-
ters at Microsoft.

include Google’s BigQuery [15], Amazon’s Athena [3], and Mi-
crosoft’s Azure Data Lake [5]. Similar job services are employed for
the internal needs of large enterprises [11, 49]. These services are
motivated by the fact that setting up and running data analytics is a
major hurdle for enterprises. Although platform as a service (PaaS),
software as a service (SaaS), and more recently database as a ser-
vice (DBaaS) [4, 6] have eased the pain of provisioning and scaling
hardware and software infrastructures, users are still responsible
for managing and tuning their servers. A job service mitigates this
pain by offering server-less analytics capability that does not require
users to provision and manage servers. Instead, the service provider
takes care of managing and tuning a query engine that can scale
instantly and on demand. Users can get started quickly using the
all familiar SQL interface and pay only for the processing used for
each query, in contrast to paying for the entire provisioned server
infrastructure irrespective of the compute resources actually used.

1.2 Problem
Given the above shift from provisioned resources to actually con-
sumed resources, enterprises naturally do not want to duplicate
their resource consumption and pay redundant costs. However, this
is a major challenge in modern enterprise data analytics which
consists of complex data pipelines written by several users, where
parts of the computations end up running over and over again. Such
computation overlap not only adds to the cost, but it is also really
hard for the developers or even the administrators to detect these
overlaps across different scripts and different users.

To illustrate the problem, consider SCOPE [11, 52], which is
the equivalent of Azure Data Lake for internal data analytics at
Microsoft. SCOPE is deployed over hundreds of thousands of ma-
chines, running hundreds of thousands of production analytic jobs
per day that are written by thousands of developers, processing
several exabytes of data per day, and involving several hundred
petabytes of I/O. Almost 40% of the daily SCOPE jobs have com-
putation overlap with one or more other jobs. Likewise, there are

Computation Reuse in Analytics Job Service at Microsoft. 
Alekh Jindal, Shi Qiao, Hiren Patel, Jarod Yin, Jieming Di, Malay Bag, Marc Friedman, Yifung Lin, Konstantinos Karanasos, Sriram Rao. SIGMOD 2018.



Spark Compute Reuse

• Instrument application log
• Analyze common subexpressions 

over Spark SQL plans
• Optimizer rules to automatically 

materialize/reuse in future queries
• Almost 30% improvement in total 

time on TPC-DS

SparkCruise: Handsfree Computation Reuse in Spark. 
Abhishek Roy, Alekh Jindal, Hiren Patel, Ashit Gosalia, Subru Krishnan, Carlo Curino. VLDB 2019 (Demo).



Step 3: feeding it back

• Actions
• Insights
• Recommendations
• Self-tuning
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Peregrine Summary
• Easier to add newer features
• Easier to add newer engines
• Easier for people to participate
• Researchers, developers, interns
• Abstracts the painful steps
• Build on top of each other
• Focus on workload optimizations

• Gray Systems Lab: aka.ms/gsl
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