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On-Premise




Need to reach by 10,
can we drive faster?




Cloud Query Engines

e Setup, installation, maintenance taken care of
* On-demand provisioning, pay as you go



Need to reach by 10,
can we drive faster?

Sorry, we don’t

have a DBA

.J

Reality Check for providers: Reality Check for customers:

 System developers == virtual DBAS! * Lots of services to choose from (even within Azure, GCP, AWS)

« Too many cloud users, compared to system developers * Lot of knobs to tune for good perf and low cost

* Lack of control; and lack of expertise
And, the DBA is gone!

* Too many support requests; often redundant

* Less time for feature development
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Cosmos: big data infra at Microsoft

* 100s of thousands of machines

* Exabytes of data at rest; Petabytes ingress/egress daily
* 500k+ batch jobs / day

* 3B+ tasks executed / day

* 10s of millions interactive queries / day

* 10s of thousands of SCOPE developers
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The missing DBA and the growing pain in Cosmos

* Large number of knobs/hints at script, data, plan level

* Only few expert users
* Rest need guidance

* Survey: better tooling for improving SCOPE queries

e Support challenge
* 10s of thousands incidents / years
* 10 incidents per system developer on call

* 100x users compared to system developers
e ~10% growth in SCOPE workload in 2019
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On-premise pain -> Cloud pain




The cloud opportunity
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The Cosmos opportunity

Massive cloud workloads

Job metadata
name, user, account, submit/start/end times

Workload
> > >

Date Services

Query plans
logical, physical, stage graph, estimates

Several TBs of

Runtime statistics -
metadata / day

Operator-wise observables

Task level logs
start/end events

Machine counters Users é 9 9 9 9 9 9 9 9

CPU, 10, etc.
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The case for a workload optimization platform

* DBA-as-a-Service
* Another service in the cloud (easier integration)
* Based on cloud workloads at hand (instance optimization)

* Engine agnostic
* Not specific to different query engines, e.g., SCOPE, Spark, SQL DW, or etc.
* E.g., view selection is still the same problem

* Global optimizations
* Cloud workloads are organized into data pipelines
* People often care about end-to-end aggregate costs in the cloud
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Engine-agnostic workload representation

Signatures —»
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Loglcal plan Phy5|cal plan Stage graph Tasks
Log + metrlcs ) » Log+ metrlcs < > Log + metrics <« > Log + metrics

Denormalized view
(Workload IR)
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Typical workload patterns

e Consider a simplified 2D space of data and queries

Queries ] Queries Queries
Recurring Similarity Dependency
Query templates appear Queries over same Queries depend on datasets

over newer datasets datasets have similarities produced by previous queries




Recurring pattern

Data

Queries

Recurring

Query templates appear
over newer datasets

* Majority of production workloads

* There is a regular ETL needed before other
things can happen

* Opportunity to learn from the past

* Examples
* Learned cardinality
* Learned cost models
e Learned resources
* Learned etc.



Recap from NWDS’19

SCOPE Cardinality Estimation
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Recap from NWDS’19

SCOPE Cardinality Estimation
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Towards a Learning Optimizer for Shared Clouds.
Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi Qiao, Sriram Rao. VLDB 2019.



SCOPE Cost Estimation

* Costs models are orders of magnitude off!

=
o

ideal

o
(o]

o
o

o
»

Under Estimation d Over Estimation

o
N

Fraction of Operators (CDF)

0.0
103 102 10! 10° 101 102 103
Estimated/Actual




SCOPE Cost Estimation

* Costs models are orders of magnitude off!

Manually tuned cost model Feeding perfect cardinalities
51.0 ideal
go o * Pervasive use of user defined functions
:%Zj « Complexity of big data systems
2 | undercstimation 7 over estmtin e Variance in the cloud environments
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Why cardinality is not enough?

* Incrementally add features el \
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Ensemble of Models over Recurring Patterns
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SCOPE Cost Estimation

* Can learn pretty accurate cost models!
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Cost Models for Big Data Query Processing: Learning, Retrofitting, and Our Findings.
Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, Wangchao Le. SIGMOD 2020 (to appear).
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Similarity pattern

* Very typical in multi-user shared cloud
environments
* Cosmos, HDI, Ant Financial, ML workflows, etc.

Data
y

e Opportunity for multi-query optimization
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. * SCOPE compute reuse
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Computation Reuse in Analytics Job Service at Microsoft.
Alekh Jindal, Shi Qiao, Hiren Patel, Jarod Yin, Jieming Di, Malay Bag, Marc Friedman, Yifung Lin, Konstantinos Karanasos, Sriram Rao. SIGMOD 2018.



Spark Compute Reuse

* Instrument application log 20-
* Analyze common subexpressions
over Spark SQL plans s
* Optimizer rules to automatically 23
materialize/reuse in future queries 52 vofr-—{fr-—-
* Almost 30% improvement in total &3
time on TPC-DS 05
0.0 -+ | H

SparkCruise: Handsfree Computation Reuse in Spark.
Abhishek Roy, Alekh Jindal, Hiren Patel, Ashit Gosalia, Subru Krishnan, Carlo Curino. VLDB 2019 (Demo).

TPC-DS Queries




Step 3: feeding it back
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llustration: Scope and Spark query engines
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Peregrine Summary

e Easier to add newer features
e Easier to add newer engines

* Easier for people to participate
* Researchers, developers, interns
e Abstracts the painful steps
* Build on top of each other
* Focus on workload optimizations

* Gray Systems Lab: aka.
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