
Peregrine: workload optimization
for cloud query engines*

Alekh Jindal
Gray Systems Lab

* Peregrine: Workload Optimization for Cloud Query Engines. Alekh Jindal, Hiren Patel, Abhishek Roy, Shi Qiao, Jarod Yin, Rathijit Sen, Subru Krishnan. SOCC 2019.

Engine
DBA

Workload

On-Premise
DBA

DBA

On-Premise

DBA

On-Premise
Need to reach by 10,
can we drive faster?

Sure!

Cloud Query Engines

• Setup, installation, maintenance taken care of
• On-demand provisioning, pay as you go

Cloud Query Engines Need to reach by 10,
can we drive faster?

Sorry, we don’t

have a DBA

Reality Check for customers:

• Lots of services to choose from (even within Azure, GCP, AWS)

• Lot of knobs to tune for good perf and low cost

• Lack of control; and lack of expertise

• And, the DBA is gone!

Reality Check for providers:

• System developers == virtual DBAs!

• Too many cloud users, compared to system developers

• Too many support requests; often redundant

• Less time for feature development

.. ahhh!

Cosmos: big data infra at Microsoft

• 100s of thousands of machines
• Exabytes of data at rest; Petabytes ingress/egress daily
• 500k+ batch jobs / day
• 3B+ tasks executed / day
• 10s of millions interactive queries / day
• 10s of thousands of SCOPE developers
• 1000s of teams

The missing DBA and the growing pain in Cosmos

• Large number of knobs/hints at script, data, plan level
• Only few expert users
• Rest need guidance
• Survey: better tooling for improving SCOPE queries

• Support challenge
• 10s of thousands incidents / years
• 10 incidents per system developer on call
• 100x users compared to system developers
• ~10% growth in SCOPE workload in 2019

Cloud pain

..…..

Database Vendor

Developers

DB

DBA

Users

Customer 1

DB

DBA

Users

Customer 2

DB

DBA

Users

Customer n

Workload Workload Workload
Local in-house experts

AutoAdmins tools

Fewer database instances

On-premise infrastructure

Longer development cycles

Shielded system developers

Expensive DBAs

DS1

Users

DS2 DS3 DSn..…

Developers

Data Services

Workload

Local in-house experts

AutoAdmins tools

Large number of instances

Managed infrastructure

Shorter development cycles

Frontline system developers

Saving DBA Costs

Pain

Pain

Pain

On-premise pain ->

The cloud opportunity

Workload

Workload Workload Workload

Fragmented on-premise workloads

Massive cloud workloads

The Cosmos opportunity

Workload

Massive cloud workloads
Job metadata

name, user, account, submit/start/end times

Query plans
logical, physical, stage graph, estimates

Runtime statistics
Operator-wise observables

Task level logs
start/end events

Machine counters
CPU, IO, etc.

Several TBs of
metadata / day

The case for a workload optimization platform

• DBA-as-a-Service
• Another service in the cloud (easier integration)
• Based on cloud workloads at hand (instance optimization)

• Engine agnostic
• Not specific to different query engines, e.g., SCOPE, Spark, SQL DW, or etc.
• E.g., view selection is still the same problem

• Global optimizations
• Cloud workloads are organized into data pipelines
• People often care about end-to-end aggregate costs in the cloud

Step 1: workload representation
Instrument, log, and collect workload characteristics

Engine-agnostic workload representation

Logical plan Physical plan Stage graph Tasks

Signatures

Denormalized view

Anonymized

(Workload IR)

Log + metrics Log + metrics Log + metrics Log + metrics

Step 2: optimize for patterns

Typical workload patterns

• Consider a simplified 2D space of data and queries

Queries Queries Queries

Da
ta

Da
ta

Da
ta

(a) Recurring (b) Similarity (c) Dependency

Queries Queries Queries

Da
ta

Da
ta

Da
ta

(a) Recurring (b) Similarity (c) Dependency

Queries Queries Queries

Da
ta

Da
ta

Da
ta

(a) Recurring (b) Similarity (c) DependencyRecurring Similarity Dependency
Query templates appear
over newer datasets

Queries over same
datasets have similarities

Queries depend on datasets
produced by previous queries

Recurring pattern

• Majority of production workloads
• There is a regular ETL needed before other

things can happen

• Opportunity to learn from the past
• Examples
• Learned cardinality
• Learned cost models
• Learned resources
• Learned etc.

Queries Queries Queries

Da
ta

Da
ta

Da
ta

(a) Recurring (b) Similarity (c) DependencyRecurring
Query templates appear
over newer datasets

SCOPE Cardinality Estimation

Under-
estimation

Over-
estimation

Ideal

Recap from NWDS’19

CARDINALITY ESTIMATION

𝐸𝑉𝐼𝐿

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

10-6 10-4 10-2 100 102 104 106 108Fr
ac

tio
n

Su
bg

ra
ph

 In
st

an
ce

s

Estimated/Actual Cardinality Ratio

Neural Network
Linear Regression

Poisson Regression

SCOPE Cardinality Estimation

Under-
estimation

Over-
estimation

Ideal

Recap from NWDS’19

Towards a Learning Optimizer for Shared Clouds.
Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi Qiao, Sriram Rao. VLDB 2019.

SCOPE Cost Estimation

• Costs models are orders of magnitude off!

b) Default Cost Model c) Manually Improved Cost Model d) Cost Models with Cardinality Feedback

Model Pearson
Correlation

0.04

0.10

0.09

0.14

ideal

Under Estimation Over Estimation

ideal

Under Estimation Over Estimation

ideal

Under Estimation Over Estimation

a) Correlation CARDINALITY ESTIMATION

𝐸𝑉𝐼𝐿

COST ESTIMATION

BAD!

SCOPE Cost Estimation

• Costs models are orders of magnitude off!

b) Default Cost Model c) Manually Improved Cost Model d) Cost Models with Cardinality Feedback

Model Pearson
Correlation

0.04

0.10

0.09

0.14

ideal

Under Estimation Over Estimation

ideal

Under Estimation Over Estimation

ideal

Under Estimation Over Estimation

a) Correlation

• Pervasive use of user defined functions
• Complexity of big data systems
• Variance in the cloud environments

Manually tuned cost model Feeding perfect cardinalities

Why cardinality is not enough?

• Incrementally add features
• Error drops from 110% to 40%
• Additional transformations needed
• Hard to come up with such heuristics

• Two sets of hash join instances
• Different feature weights
• Hard to instance optimize manually

Ensemble of Models over Recurring Patterns

Operator-subgraph Operator-subgraphApprox Operator-inputs Operator

Coverage
Accuracy

fixed approximately fixed featurized

Op-Subgraph

a
b
c
d
e
f

Op-SubgraphApprox Op-Input Operator Combined

er
ro
r

no	coverage no	coverage no	coverage

SCOPE Cost Estimation

• Can learn pretty accurate cost models!

b) Default Cost Model c) Manually Improved Cost Model d) Cost Models with Cardinality Feedback

Model Pearson
Correlation

0.04

0.10

0.09

0.14

ideal

Under Estimation Over Estimation

ideal

Under Estimation Over Estimation

ideal

Under Estimation Over Estimation

a) Correlation

Cost Models for Big Data Query Processing: Learning, Retrofitting, and Our Findings.
Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, Wangchao Le. SIGMOD 2020 (to appear).

Similarity pattern

• Very typical in multi-user shared cloud
environments
• Cosmos, HDI, Ant Financial, ML workflows, etc.

• Opportunity for multi-query optimization
• SCOPE compute reuse

Queries Queries Queries

Da
ta

Da
ta

Da
ta

(a) Recurring (b) Similarity (c) DependencySimilarity
Queries over same
datasets have similarities

Computation Reuse in Analytics Job Service at Microsoft
Alekh Jindal, Shi Qiao, Hiren Patel, Zhicheng Yin, Jieming Di, Malay Bag, Marc Friedman,

Yifung Lin, Konstantinos Karanasos, Sriram Rao
Microsoft

{aljindal,shqiao,hirenp,zhyin,jiedi,malayb,marc.friedman,yifungl,kokarana,sriramra}@microsoft.com

ABSTRACT
Analytics-as-a-service, or analytics job service, is emerging as a
new paradigm for data analytics, be it in a cloud environment or
within enterprises. In this setting, users are not required to manage
or tune their hardware and software infrastructure, and they pay
only for the processing resources consumed per job. However, the
shared nature of these job services across several users and teams
leads to significant overlaps in partial computations, i.e., parts of
the processing are duplicated across multiple jobs, thus generating
redundant costs. In this paper, we describe a computation reuse
framework, coined CloudViews, which we built to address the
computation overlap problem in Microsoft’s SCOPE job service. We
present a detailed analysis from our production workloads to moti-
vate the computation overlap problem and the possible gains from
computation reuse. The key aspects of our system are the follow-
ing: (i) we reuse computations by creating materialized views over
recurring workloads, i.e., periodically executing jobs that have the
same script templates but process new data each time, (ii) we select
the views to materialize using a feedback loop that reconciles the
compile-time and run-time statistics and gathers precise measures
of the utility and cost of each overlapping computation, and (iii) we
create materialized views in an online fashion, without requiring
an offline phase to materialize the overlapping computations.

KEYWORDS
Materialized Views; Computation Reuse; Shared Clouds
ACM Reference Format:
Alekh Jindal, Shi Qiao, Hiren Patel, Zhicheng Yin, Jieming Di, Malay Bag,
Marc Friedman, Yifung Lin, Konstantinos Karanasos, Sriram Rao. 2018.
Computation Reuse in Analytics Job Service at Microsoft. In SIGMOD’18:
2018 International Conference on Management of Data, June 10–15, 2018,
Houston, TX, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3183713.3190656

1 INTRODUCTION
1.1 Background
There is a recent trend of offering analytics-as-a-service, also re-
ferred to simply as job service, by major cloud providers. Examples

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3190656

 0

 20

 40

 60

 80

 100

clus er1 clus er2 clus er3 clus er4 clus er5
P

er
ce

nt
ag

e

Overlapping jobs
Users with overlapping jobs

Overlapping subgraphs

Figure 1: Computation Overlap in different production clus-
ters at Microsoft.

include Google’s BigQuery [15], Amazon’s Athena [3], and Mi-
crosoft’s Azure Data Lake [5]. Similar job services are employed for
the internal needs of large enterprises [11, 49]. These services are
motivated by the fact that setting up and running data analytics is a
major hurdle for enterprises. Although platform as a service (PaaS),
software as a service (SaaS), and more recently database as a ser-
vice (DBaaS) [4, 6] have eased the pain of provisioning and scaling
hardware and software infrastructures, users are still responsible
for managing and tuning their servers. A job service mitigates this
pain by offering server-less analytics capability that does not require
users to provision and manage servers. Instead, the service provider
takes care of managing and tuning a query engine that can scale
instantly and on demand. Users can get started quickly using the
all familiar SQL interface and pay only for the processing used for
each query, in contrast to paying for the entire provisioned server
infrastructure irrespective of the compute resources actually used.

1.2 Problem
Given the above shift from provisioned resources to actually con-
sumed resources, enterprises naturally do not want to duplicate
their resource consumption and pay redundant costs. However, this
is a major challenge in modern enterprise data analytics which
consists of complex data pipelines written by several users, where
parts of the computations end up running over and over again. Such
computation overlap not only adds to the cost, but it is also really
hard for the developers or even the administrators to detect these
overlaps across different scripts and different users.

To illustrate the problem, consider SCOPE [11, 52], which is
the equivalent of Azure Data Lake for internal data analytics at
Microsoft. SCOPE is deployed over hundreds of thousands of ma-
chines, running hundreds of thousands of production analytic jobs
per day that are written by thousands of developers, processing
several exabytes of data per day, and involving several hundred
petabytes of I/O. Almost 40% of the daily SCOPE jobs have com-
putation overlap with one or more other jobs. Likewise, there are

Computation Reuse in Analytics Job Service at Microsoft.
Alekh Jindal, Shi Qiao, Hiren Patel, Jarod Yin, Jieming Di, Malay Bag, Marc Friedman, Yifung Lin, Konstantinos Karanasos, Sriram Rao. SIGMOD 2018.

Spark Compute Reuse

• Instrument application log
• Analyze common subexpressions

over Spark SQL plans
• Optimizer rules to automatically

materialize/reuse in future queries
• Almost 30% improvement in total

time on TPC-DS

SparkCruise: Handsfree Computation Reuse in Spark.
Abhishek Roy, Alekh Jindal, Hiren Patel, Ashit Gosalia, Subru Krishnan, Carlo Curino. VLDB 2019 (Demo).

Step 3: feeding it back

• Actions
• Insights
• Recommendations
• Self-tuning

Extensions
Jar

Optimizer Rule1: Online materialize
Optimizer Rule2: Computation Reuse

SCOPE Modifications to compiler/optimizer

Pluggable extensions from outside

SCOPE
Compiler

flags

Illustration: Scope and Spark query engines

Compiler Optimizer Scheduler RuntimeQuery Result

Query Engine

Feedback
Service

View
Selection

Selected Views

Learn
Cardinality

Cardinality Models

Co
m

m
on

Su
be

xp
re

ss
io

ns

Query Subexpressions IR

Workload Repository SCOPE
Connectors
Parsers
Enumerators

Recurring Signature
Strict Signature

Peregrine

Peregrine Summary
• Easier to add newer features
• Easier to add newer engines
• Easier for people to participate
• Researchers, developers, interns
• Abstracts the painful steps
• Build on top of each other
• Focus on workload optimizations

• Gray Systems Lab: aka.ms/gsl

SCOPE Spark Hive ..…
Workload-aware
Query Engines

Sharing Recurring Coordinating

Multi-query Optimization,
e.g., CloudViews

Learned optimizations,
e.g., Learned Cardinality

..…

Mathematical Solvers Machine Learning Graph Analytics

W
or

kl
oa

d
O

pt
im

iza
tio

n

Patterns

Dependency-driven optimizations,
e.g., physical design for pipeline

Metadata Plans Statistics

Feature Store

Ingest

Parse

Enumerate

Workload Intermediate Representation (IR)

Signatures

Query Plan
Instrumentation

..…

W
or

kl
oa

d
Re

pr
es

en
ta

tio
n

Insights Recommendations Self-tuning

Users

Dashboard Alerts

Feedback Service

Query Annotations

W
or

kl
oa

d
Fe

ed
ba

ck

Feedback

We are hiring!

https://aka.ms/gsl

