Large-Scale Data Analysis:
Bridging the Gap

Alekh Jindal, Yagiz Kargin, Sarath
Kumar, Vinay Setty

SAARLAND pE
UNIVERSITY @

Outline

e Motivation: Parallel DBMS vs Map/Reduce
e Schema & Benchmarks Overview

e Original(Pavlo) Map/Reduce Plans

e Improved(SAVY) Design & Implementation

e Improving Hadoop
o Indexing
o Co-Partitioning

e Experiments

e Conclusion

Motivation

e Ever growing data
o About 20TB per Google crawl!

e Computing Solutions
o High-end server: 1625.60€/core, 97.66€/GB
o Share-nothing nodes: 299.50€/core, 166.33
€/GB

e Two Paradigms
o Parallel DBMS
o Map/Reduce

Parallel DBMS

[DeWitt, D. and Gray, J. 1992.]

Parallel DBMS: Advantages

e Can be column based
o Example: Vertica

e Local joins possible
o Partition based on join key

e Can work on compressed data
o reduced data transfer

e Flexible query plans
e Supports Declarative languages like SQL

Parallel DBMS - Shortcomings

e Not free of cost
e Not open source
e Cannot scale to thousands of nodes: why?

o Less fault tolerant
o Assumes homogeneous nodes

e Not so easy to achieve high performance
o Needs highly skilled DBA
o Needs high maintenance

Map/Reduce(Hadoop):

Advantages
e Free of cost

e Open source

e Fault tolerant

e Scales well to thousands of nodes
e L ess maintenance

e Flexible query framework

Map/Reduce(Hadoop):
Shortcomings

e Lack of inbuilt Indexingrrr=sms
e Cannot guarantee local joif e ==

e Performance degradation for SQL like
gueries

> Multiple MR phases rrem

o Each MR phase adds extra cost
e No Flexible query plans
e Data transfer not optimized

Benchmarks and Schema

Schema

CREATE TABLE Documents (

url VARCHAR
(100) PRIMARY KEY,

contents TEXT
);

CREATE TABLE Rankings (

pageURL VARCHAR
(100) PRIMARY KEY,

pageRank INT,
avgDuration INT

Schema

CREATE TABLE UserVisits (
sourcelP VARCHAR(16),
destURL VARCHAR(100),
visitDate DATE,
adRevenue FLOAT,
userAgent VARCHAR(64),
countryCode VARCHAR(3),
languageCode VARCHAR(0),
searchWord VARCHAR(32),
duration INT

);

Benchmarks 1&2

e Selection task (Benchmark 1)

o SELECT pageURL, pageRank FROM Rankings
WHERE pageRank > X;

e Aggregation task (Benchmark 2)

o SELECT sourcelP, SUM(adRevenue) FROM
UserVisits GROUP BY sourcelP;

o SELECT SUBSTR(sourcelP, 1, 7), SUM(adRevenue)
FROM UserVisits GROUP BY SUBSTR(sourcelP, 1,
7);

Benchmark 3: Join Task

Projection &

e SELECT INTO Temp sourcelP, AVG

(pageRank) as avgPageRank, SUM
(adRevenue) as totalRevenue

ﬂQOM Rankings AS R, UserVisits AS UV
HERE

V.
visitDate BETWEEN Date('2000-01-15") AN :

('2000-01-22") GROUP BY UV.sourcelP;
e SELECT sourcelP, totalRevenue, avgPageRank

FROM Temp ORDER BY totalRevenue DESC
LIMIT 1:

Original (Pavlo) MR Plans

Benchmark 1 € i

to merge
N

\ETely)

e — T
Map() " Reduce Resul
OB O

Map() Result [4 -
Data PageRank >
/. L VRN v

SELECT pageURL, pageRank FROM Rankings
WHERE pageRank > 10;

Data

Benchmark 2: Phase 1

Phase 1

/N
Combiner

-One

R w—
—+

Map:

sum

[

—

Reduce:

Reduce:

—

s | Resultf

| - Result1

Result1

Benchmark 2: Phase 2

Extra MR job
to merge

HDFS

Result1

=»

| Reduce Resul

O,

O

\ J L J

Benchmark 3 — Phase 1

HDFS
User Ranking ‘
visits °

User Ranking ‘
oo S

visits

User Ranking - predicate
. . S

visits

predicate

predicate

Also classifies two

types of records

<Source IP, URL, PageRank,

e>

<Source IP, URL, PageRank,
adReveune>

Result1

<Source IP, URL, PageRank,

adkeveune>

Result1

Also classifies two
types of records

Benchmark 3 — Phase 2

<Source IP, URL, PageRank,

adReveune
Result1 ‘

<Source IP, URL, PageRank,

adReveune
Result1

<Source IP, URL, PageRank,

adReveune>
Result1

(=
~ Mappers

Reducers

Avg(PR), Sum
(adRevnue)

Avg(PR), Sum
(adRevnue)

Avg(PR), Sum

(adRevnue)

<Source IP, Avg(PR), Max
(Sum(adRevenue))>

‘ Result2

<Source IP, Avg(PR), Max
(Sum(adRevenue))>

L

<Source IP, Avg(PR), Max

(S e))>
il

Benchmark 3 — Phase 3

<Source IP, Avg(PR), Max
(Sum(adRevenue))>

Result2

<Source IP, Avg(PR), Max

(Sum(adRevenue=’>

<Source IP, Avg(PR), Max

(Sum(adRevm

(-

(-

+—

Chicoo)
Inter.
e

*>
o
o B

- J

-

Resu ‘

Max(Sum
(adRevnue)

/

Source IP, Avg(PR), Sum
(adRevenue)

— 2 Final

Result

Improved (Savy) MR Plans

Binary Data

e Eliminates delimiters

e Avoids splitting

e Makes tuples of fixed length
e Helps in indexing

Benchmark 1 _g=onam

(= G)

PageRank = = -~ W Rosylt
107 ‘
PageRank > Result
... R R - ..
PageRank > 7 Result l
107

Benchmark 2 Extra MR job

to merge

Phase

Phase 1

Combiners

1his

-

Result merge

—

Benchmark 3(Design |) — Phase

User Ranking
visits S

—

Record

Reader
(S

predicate

User Ranking
visits 2
Ranking
S

Reducers

<Source IP, URL, PageRank,
adReveune>

d Result1

<Source IP, URL, PageRank,
adRkeveune>

—

Benchmark 3(Design |) — Phase

&

<Source IP, URL, PageRa

=k

<Source IP, URL, PageRa

=

<Source IP, URL, PageRa

adR

e)

R

ank,

Identity

nk,

Identity

4 - b

Ava(PR),
Sum

Aval(PR)

Sum

Inter.
Resu

 recvcer

N

Max(Sum
- (adRevnue)

Source IP, Avg(PR), Sum
(adRevenue)

Benchmark 3(Design 1) —
Dhage 1

—
“ R Reducers

Max(Sum
User (adRevenue))
visits |

HDFS

<Source IP, Sum
adReveune), <Dest URLs>>

Result1

<Source IP, Sum

Max(Sum

User (adRevenue))

visits

. 4 Max(Sum - |
Identity (aRBysHIS)H Result1

S

Very small data

(Top R recorg

Benchmark 3(Design |) — Phase

o

<Source IP, Sum(adReveune)j

<Pe R
Result1

<Source IP, Sum(adReveune),

<Source IP, Sum(adReveune),

> S
Rankin Read
gs
<pDe R >
Rankin
Result1 S 2 d

Reader

<pe R >>
Rankin Read
Result1 gs ea

—

Single Mapper

Max(sum(adRevenue))

&
Join

m—

Source IP, Avg(PR), Sum
(adRevenue)

Final
Result

Improving Hadoop

Improving Hadoop

e Improve Selection (Indexing)
e Improve Join (Co-partitioning)

Indexing

e Data Loading
oindex and load data into DFS

e Query Execution
o Index look-up and selection

e Implementation on Hadoop

Data Loading

e Partitioning
e Sorting

e Bulk Loading
e HID Splits

Data Loadlng

Cllent

Partitioner

Sorting Sorting i Sorting

7 ! !

" Bukload | [Bukload | [Bulkload
~ thelindex | | thelndex | | thelndex
v = v | v
Construct ; § Construct f Construct

HIDSlet r % HIDSlet f HIDSpIrt

Partitioning

Split input data at tuple boundaries

Partitioning

Split input data at tuple boundaries

aidny

aidny

adny

aidny

aidny

adny

aidny

aidny

adny

aidny

aidny

aidny

aidny

aidny

aldn)

adny

aidny

aidny

adny

aidn|

aidny

aidny

aidny

aidny

aidny

Partitioning

Split input data at tuple boundaries

adny

adny

aidny

adny

adny

aidny

adng

adny

aidnyL

aydny
adny

adny

aidny

adny

adny

aidny

aydny

adny

adny

aidny
adny

adny

aidny

adny

adny

Split input data at tuple boundaries

Partitioning

Tuple
Tuple
Tuple
Tuple

Tuple

Tuple
Tuple
Tuple
Tuple
Tuple
Tuple
Tuple
Tuple
Tuple

Tuple

Tuple
Tuple
Tuple
Tuple
Tuple
up

Tuple
Tuple
Tuple
Tuple
Tuple

(SPLIT

J L SPLIT

Sorting

Sort each split on the index key

50 |23 |78 ‘19 ‘3 ‘42

60 |13 |88 |17

5

47

70

25 |57 ‘14 ‘34 ‘45

Sort each split on the index key

50

23

18

19

42

Sorting

60 ‘13 ‘88 17

47

19

23

42

50

18

10

25

57

14

34

45

17

47

60

88

14

25

34

45

il

70

Bulk Loading

Bulk load CSS tree index

92

HID Split

Construct Header-Index-Data Split

Data

HID Split

Construct Header-Index-Data Split

Co I

HID Split

Construct Header-Index-Data Split

Header:

Co I

Index end offset
Data end offset
Start index key
End index key

HID Split

Construct Header-Index-Data Split

Header:

Index end offset
Data end offset
Start index key
End index key

Query Execution

e Partitioning

e Split selection
e [Index lookup
e Extractor

Query Execution

 Client ;
[Partitioner]d—ﬁ

Split
Selection

Index
Lookup

Y v

Extractor] [Extractor } [Extractor

- l ¢

; Index)
L Lookup

Partitioning

Read header to get HID boundaries

Partitioning

Read header to get HID boundaries

Partitioning

Read header to get HID boundaries

Partitioning

Read header to get HID boundaries

Split Selection

Discard splits containing out of range index keys

Index Lookup

Find data offsets corresponding to LOW and HIGH keys

Index Lookup

Find data offsets corresponding to LOW and HIGH keys

LOW
Key

LOW Key
Data Offset

Index Lookup

Find data offsets corresponding to LOW and HIGH keys

HIGH
Key

HIGH Key
Data Offset

Index Lookup

Find data offsets corresponding to LOW and HIGH keys

Index Lookup

Find data offsets corresponding to LOW and HIGH keys

Full Contained H

LOW HIGH

Index Lookup

Find data offsets corresponding to LOW and HIGH keys

Full Contained H

LOW HIGH

LOW

Index Lookup

Find data offsets corresponding to LOW and HIGH keys

Full Contained H

LOW HIGH
LOW

HIGH

Index Lookup

Find data offsets corresponding to LOW and HIGH keys

Point Contained

*

LOW HIGH

Index Lookup

Find data offsets corresponding to LOW and HIGH keys

Point Contained

?

LOW HIGH

\ A

LOW HIGH

Index Lookup

Find data offsets corresponding to LOW and HIGH keys

Point Contained

*
LOW HIGH
f f
LOW HIGH

Not Contained

b4

LOW HIGH

Extractor

Perform selection on data

Extractor

Extractor

Pass sub-split to Record Reader for processing

Extractor -

Mapper

Implementation on Hadoop

Loading
e CSS Tree Index

ndirect index
~our key types supported - Int, Float, Date, String

ndex stored as byte array

e Reducer to reduce number of files
e Integral number of HID splits per reducer output

Querying
e Discover HID split boundaries from respective headers
e Read only the selected data from HDFS

Co-Partitioning

e Data loading
e Query execution

Map

Map Reduce

Client

Map Reduce

o

Map

f ~ Add header to
- Group on Joinkey = co-group

Data Loading

e I T

Data Loading
Relation 1 | _

G oup by Jain key
(Map)

oy o Sy

Data Loading
Relation 1 | _

G oup by Join key
(Map)

(duce)

\/\

Data Loading
Relation 1 | _

Group by Join key
(Map)

I l Add Header .

(Reduce)

\/\

Combine into single
file (Reduce)

Query Execution

il 88 B8 08 88 g0 Qo

Query Execution

Query Execution

I |

HE 88 88 08 88 B0 ele
I |
I |

Query Execution

| |
| I
Hi 88 838 08 88 30 cle
| I
| I

R A o

.

Query Execution

| |
| I
Hi 88 838 08 88 30 cle
| I
| I

R A o

Indexing on top of Co-partitioning

il B8 B8 08 B8 B

Indexing on top of Co-partitioning

I
gl B8 88 08 B8 BE
I
|
1

Indexing on top of Co-partitioning

0o B8 OO OO0 B0 B
poo ¢

Indexing on top of Co-partitioning

|
il 858 B 00 88 58
|
|
'

Indexing on top of Co-partitioning

|
il 858 B 00 88 58
|
|
'

Indexing on top of Co-partitioning

il 858 B 00 88 58
|
|
'

Indexing on top of Co-partitioning

il 858 B 00 88 58
|
|
'

Experiments

Experimental Setup

e Hadoop 0.19.1

e 5 nodes

e Speed?

e RAM?

e Gigabit Ethernet

e Data size
o User Visits: 20GB
o Rankings: 32MB

40000

35000

30000

25000

20000

15000

10000

5000

Results

Data Size

35G

19G
M Rankings

N UserVisits

32M 64M

Text Binary

Results

Benchmarkl
35

30

25
20 - M Pavio
Time(s) M Savy
15 1 M Savy-binary
. M Savy-Index
0

Pavlo Savy Savy-binary Savy-Index

o

o

"

Results

Benchmark2
250
212.048
200 -
168.722
150
M Pavlo
Time(s) S
M Savy
100
M Savy-binary
50 -
0

Pavio Savy Savy-binary

200
180
160
140
120
Time(s) 100
80
60
40
20
0

Results

152.019

Pavlo

Benchmark3

127353

Savy

175.28

103.568

Savy-binary Savy-Index

M Pavlo

M Savy

M Savy-binary
M Savy-Index

70
60
50
40
30
20
10

58.08

Pavlo

Results

Benchmarkl
53080 55.361
47.065 | ‘ l

Savy

Savy-binary

Savy-Index

M Pavlo
M Savy
M Savy-binary

M Savy-Index

Roadblocks Faced

e Data generation:
o 20GB UserVisits, 338MB Rankings in HDFS
o Took 16 hours for generation
o Too many OS/library dependencies
o Poor documentation

e Number of nodes:
o Allocated 6 nodes
o Effective (up-and-running) 4 nodes
o Map/Reduce parallelism not exploited
o Per-split indexing ideally suited for highly parallel
execution

Roadblocks Faced

e Data normalization
o Schema uses VARCHAR data types
o Input data normalized to fixed tuple-sized binaries
o Byte oriented processing speedup negated by increased
iInput size
o However, facilitates indexing and co-partitioning

e Low selectivity
o Selection task has selectivity close to 1
o Indexing benefits are sabotaged

e |ncorrect base result
o Reported join task result was not correct

Roadblocks Faced

e Implementation deviation from the paper
o Composite key is not really used in join task

Discussion: Loopholes

e Benchmarks are well suited (biased) for databases
e Huge difference in data loading time

e Queries make heavy use of indexing, sorting data
e Query optimization not done for Map/Reduce

e Fault tolerance not compared

Discussion: We can do better!

e Map/Reduce plans can be optimized

e Normalized binary input data can help

e Indexing feasible and performs good

e Co-partitioning feasible and looks promising

Conclusions

References

e Pavlo, A., Paulson, E., Rasin, A., Abad,
D. J., DeWitt, D. J., Madden, S., and
Stonebraker, M. 2009. A comparison of
approaches to large-scale data analysis.
SIGMOD '09.

e DeWitt, D. and Gray, J. 1992. Parallel
database systems: the future of high
performance database systems. Commun.

ACM35, 6 (Jun. 1992)

