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Motivation

e Ever growing data
o About 20TB per Google crawl!

e Computing Solutions
o High-end server: 1625.60€/core, 97.66€/GB
o Share-nothing nodes: 299.50€/core, 166.33
€/GB

e Two Paradigms
o Parallel DBMS
o Map/Reduce



Parallel DBMS

[DeWitt, D. and Gray, J. 1992. ]



Parallel DBMS: Advantages

e Can be column based
o Example: Vertica

e Local joins possible
o Partition based on join key

e Can work on compressed data
o reduced data transfer

e Flexible query plans
e Supports Declarative languages like SQL



Parallel DBMS - Shortcomings

e Not free of cost
e Not open source
e Cannot scale to thousands of nodes: why?

o Less fault tolerant
o Assumes homogeneous nodes

e Not so easy to achieve high performance
o Needs highly skilled DBA
o Needs high maintenance



Map/Reduce(Hadoop):

Advantages
e Free of cost

e Open source

e Fault tolerant

e Scales well to thousands of nodes
e L ess maintenance

e Flexible query framework



Map/Reduce(Hadoop):
Shortcomings

e Lack of inbuilt Indexingrrr=sms
e Cannot guarantee local joif e ==

e Performance degradation for SQL like
gueries

> Multiple MR phases rrem

o Each MR phase adds extra cost
e No Flexible query plans
e Data transfer not optimized



Benchmarks and Schema



Schema

CREATE TABLE Documents (

url VARCHAR
(100) PRIMARY KEY,

contents TEXT
);

CREATE TABLE Rankings (

pageURL VARCHAR
(100) PRIMARY KEY,

pageRank INT,
avgDuration INT



Schema

CREATE TABLE UserVisits (
sourcelP VARCHAR(16),
destURL VARCHAR(100),
visitDate DATE,
adRevenue FLOAT,
userAgent VARCHAR(64),
countryCode VARCHAR(3),
languageCode VARCHAR(0),
searchWord VARCHAR(32),
duration INT

);



Benchmarks 1&2

e Selection task (Benchmark 1)

o SELECT pageURL, pageRank FROM Rankings
WHERE pageRank > X;

e Aggregation task (Benchmark 2)

o SELECT sourcelP, SUM(adRevenue) FROM
UserVisits GROUP BY sourcelP;

o SELECT SUBSTR(sourcelP, 1, 7), SUM(adRevenue)
FROM UserVisits GROUP BY SUBSTR(sourcelP, 1,
7);



Benchmark 3: Join Task

Projection &

e SELECT INTO Temp sourcelP, AVG

(pageRank) as avgPageRank, SUM
(adRevenue) as totalRevenue

ﬂQOM Rankings AS R, UserVisits AS UV
HERE

V.
visitDate BETWEEN Date('2000-01-15") AN :

('2000-01-22") GROUP BY UV.sourcelP;
e SELECT sourcelP, totalRevenue, avgPageRank

FROM Temp ORDER BY totalRevenue DESC
LIMIT 1:




Original (Pavlo) MR Plans
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Benchmark 2: Phase 1
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Benchmark 2: Phase 2
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Benchmark 3 — Phase 1
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Benchmark 3 — Phase 2
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Benchmark 3 — Phase 3
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Improved (Savy) MR Plans



Binary Data

e Eliminates delimiters

e Avoids splitting

e Makes tuples of fixed length
e Helps in indexing



Benchmark 1 _g=onam

(= G )

PageRank = = -~ W Rosylt
107 ‘
PageRank > Result
... R R - ..
PageRank > 7 Result l
107




Benchmark 2 Extra MR job
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Benchmark 3(Design |) — Phase
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Improving Hadoop



Improving Hadoop

e Improve Selection (Indexing)
e Improve Join (Co-partitioning)



Indexing

e Data Loading
oindex and load data into DFS

e Query Execution
o Index look-up and selection

e Implementation on Hadoop



Data Loading

e Partitioning
e Sorting

e Bulk Loading
e HID Splits



Data Loadlng
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Partitioning

Split input data at tuple boundaries



Partitioning

Split input data at tuple boundaries
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Partitioning

Split input data at tuple boundaries
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Split input data at tuple boundaries
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Sorting

Sort each split on the index key
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Sort each split on the index key

50

23

18

19

42

Sorting

60 ‘13 ‘88 17

47

19

23

42

50

18

10

25

57

14

34

45

17

47

60

88

14

25

34

45

il

70




Bulk Loading

Bulk load CSS tree index

92




HID Split

Construct Header-Index-Data Split

Data




HID Split

Construct Header-Index-Data Split
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HID Split

Construct Header-Index-Data Split

Header:

Co I

Index end offset
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HID Split

Construct Header-Index-Data Split

Header:

Index end offset
Data end offset
Start index key
End index key



Query Execution

e Partitioning

e Split selection
e [Index lookup
e Extractor



Query Execution
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Partitioning

Read header to get HID boundaries



Partitioning

Read header to get HID boundaries




Partitioning

Read header to get HID boundaries




Partitioning

Read header to get HID boundaries




Split Selection

Discard splits containing out of range index keys




Index Lookup

Find data offsets corresponding to LOW and HIGH keys




Index Lookup

Find data offsets corresponding to LOW and HIGH keys
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Index Lookup

Find data offsets corresponding to LOW and HIGH keys



Index Lookup

Find data offsets corresponding to LOW and HIGH keys
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Index Lookup

Find data offsets corresponding to LOW and HIGH keys
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Index Lookup

Find data offsets corresponding to LOW and HIGH keys

Point Contained

?

LOW HIGH

\ A

LOW HIGH



Index Lookup

Find data offsets corresponding to LOW and HIGH keys
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Extractor

Perform selection on data

Extractor




Extractor

Pass sub-split to Record Reader for processing

Extractor -

Mapper




Implementation on Hadoop

Loading
e CSS Tree Index

ndirect index
~our key types supported - Int, Float, Date, String

ndex stored as byte array

e Reducer to reduce number of files
e Integral number of HID splits per reducer output

Querying
e Discover HID split boundaries from respective headers
e Read only the selected data from HDFS



Co-Partitioning

e Data loading
e Query execution
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Data Loading
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Query Execution
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Query Execution
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Query Execution
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Indexing on top of Co-partitioning
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Indexing on top of Co-partitioning
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Indexing on top of Co-partitioning
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Indexing on top of Co-partitioning
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Indexing on top of Co-partitioning
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Indexing on top of Co-partitioning
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Experiments



Experimental Setup

e Hadoop 0.19.1

e 5 nodes

e Speed?

e RAM?

e Gigabit Ethernet

e Data size
o User Visits: 20GB
o Rankings: 32MB
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Results
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Roadblocks Faced

e Data generation:
o 20GB UserVisits, 338MB Rankings in HDFS
o Took 16 hours for generation
o Too many OS/library dependencies
o Poor documentation

e Number of nodes:
o Allocated 6 nodes
o Effective (up-and-running) 4 nodes
o Map/Reduce parallelism not exploited
o Per-split indexing ideally suited for highly parallel
execution



Roadblocks Faced

e Data normalization
o Schema uses VARCHAR data types
o Input data normalized to fixed tuple-sized binaries
o Byte oriented processing speedup negated by increased
iInput size
o However, facilitates indexing and co-partitioning

e Low selectivity
o Selection task has selectivity close to 1
o Indexing benefits are sabotaged

e |ncorrect base result
o Reported join task result was not correct



Roadblocks Faced

e Implementation deviation from the paper
o Composite key is not really used in join task



Discussion: Loopholes

e Benchmarks are well suited (biased) for databases
e Huge difference in data loading time

e Queries make heavy use of indexing, sorting data
e Query optimization not done for Map/Reduce

e Fault tolerance not compared



Discussion: We can do better!

e Map/Reduce plans can be optimized

e Normalized binary input data can help

e Indexing feasible and performs good

e Co-partitioning feasible and looks promising



Conclusions
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