B. Tech Project Report

Microcontroller Based
Power Distribution

Monitoring & Control

Project Guide: Dr S. P. Das

Submitted By -

Alekh Jindal (Y2038)
Yash Agarwal (Y2436)

Acknowledgements

We would like to express our sincere gratitude to Dr S. P. Das, Associate Professor,
Department of Electrical Engineering, IIT Kanpur, for his continuous encouragement
and support. During the topic finalizing period he helped us fix a target and then it
was real fun chasing it. Dr Das initiated us with a very simple approach and thereon
building the complexity as the project moved on. We are grateful to him for giving us
such a wonderful learning experience.

We are also highly grateful to Mr. Kapil Deo, In-charge, Microprocessor Lab, for his
support and cooperation over strenuous long hours. It was due to his urge and
motivation that we were able to realize this project.

We are also thankful to Mr. J Phani Kumar, M. Tech Student, and to Mr. Ranjan
Kumar Behara, PhD Student, for their useful help and support.

1.

1.1
1.2
1.3
1.4
1.5

2.

3.

3.1
3.2
3.3
34

4.

5.

5.1
5.2
53
5.4

6.

7.

7.1
7.2
7.3
7.4

8.
8.1
8.2
8.3
9.

10.

Contents

Introduction
Motivation
Project Idea
Reinventing the wheel
Project Implementation
Organization of the Report

Overall Project Design

Remote Terminal Unit
Real Time Sampling
Computations
Digital output
Communication Handler

Base Station

Distributed Network Protocol(DNP) 3.0
Introduction
Design
Implementation
Layering

Schematics of Wireless Communication

Cyclic Redundancy Check(CRC)
Objective
Algorithm
Hardware Implementation
Software Implementation

Experimental Results and Discussions
Performance
Source of Error
Snapshots of work

Conclusion

References

Appendix A Assembly Codes
Appendix B LabVIEW Codes

Abstract

This project aims to automate the process of obtaining data relating to power
distribution such as from a substation or transformer and to control a circuit breaker, a
motor, or a valve. The system consists of a Base Station and a Remote Terminal Unit
(RTU). Base Station is a Desktop PC running a graphical user interface (GUI)
generated in labVIEW. RTU is 80196KC microcontroller-based Terminal which is
located at a remote substation / transformer. The RTU being compact can even be
installed on the pole top of a transformer. It measures the voltages and currents of
input lines, and calculates RMS values of voltages and currents along with average
power of the line. The Base Station and the RTU communicate via serial link through
RS-232 ports. The physical medium can be wired or wireless using BiM-418-F
transceiver chips.

The GUI at Base Station allows user to monitor RMS voltage, current and average
power of any line. Monitoring can be instantaneous or in continuous mode. Thereafter
energy audit and other forms of analysis can be carried out at the base station, where
data from all the different substations will be available. In addition to this, there is
also some control capability at the base station. The operator can operate on digital
lines i.e. switch on or switch off any breaker connected to the RTU.

To ensure validity of exchanged data and standardization in the process, distributed
network protocol (DNP 3.0). It helps in overcoming noise and signal distortion. DNP3
software is layered to provide reliable data transmission. Layering also helps to
organize the transmission of data and commands. The three layers in DNP3 protocol
are: application layer, data link layer and physical layer. The project implements
Multi-drop DNP3 architecture whereby one master communication device (Base
Station) is connected to several slave communication devices (RTUs). To ensure
reliability, error detection algorithm cyclic redundancy check (CRC) is used. It is used
along with DNP 3.0 protocol. CRC algorithms are designed to maximize the
probability of error detection. The probability that a message contains errors and the
CRC stills checks out is very low.

Key words: Intel 80196 microcontroller, LabVIEW 7.1, Power Distribution System,
Remote Terminal Unit, DNP 3.0 protocol, Base Station

1. Introduction

1.1 Motivation

The motivation for this project comes from the need for an efficient system of energy
management. Efficient power distribution requires interactive monitoring and control
of the distribution/transmission network. Moreover in India, a substantial portion of
energy is drained by unauthorized power consumption, thereby requiring further
attention. In order to cope up with increasing demand of reliable and quality power,
there is a need for automated maintenance with provisions for dealing with cases of
failure.

1.2 Project Idea

This project aims to provide an automated system whereby energy flow can be closely
monitored and controlled remotely. The plan is to come up with an integrated
microcontroller based wireless remote terminal unit. The terminal unit would be
operating in the actual field setting and would be concerned with monitoring and
control of the distribution network. This necessitates the terminal unit to be integrated
and robust. The terminal unit would be operated from the base station via user
friendly software tools. This provides the facility of post processing and analysis
centrally and in a more rigorous manner. This will enable the detection of distribution
bottle necks and will also account for the high losses that are being incurred.

A two way wireless communication link would be used to communicate between the
terminal unit and the base station. Base station links together several terminal units
and hence acts as a central server for the different power distribution links. The
central nature of the base station is specifically useful since network wide view of the
power distribution can be visualized. This can help in taking actions on a part of
network due to events occurring on some other part of the network.

1.3 Reinventing the Wheel

A similar solution has been previously proposed but it differs from this project in the
following sense —

1. This project focuses on an integrated remote terminal unit (RTU). A 16 bit
microcontroller instead of a PC based setup can suffice the purpose of RTU
controller.

2. The RTU is expected to be typically 1/4™ the size of the existing solution.

Given its robustness, this RTU can be installed at pole tops or at locations

remote in real sense.

4. Wireless communication link is being established which uses distributed
network protocol (DNP 3.0).

W

5. A centralized base station (for all RTUs) with user friendly graphical user
interface (GUI) is being provided to the end user.
6. Itisalow cost solution.

1.4 Project Implementation

Remote Terminal Units (RTUs) will be mounted on all transformers distribution
network. These RTUs would have the capability to measure line currents and line
voltages (through the use of Current Transformers and Potential transformers). They
would then transmit this data, on a periodic basis, to a central base station, which
would be located in the substation. Each distribution transformer would have
complete accountability for the power that it is extracting from the grid. Similarly,
every substation would have complete information about power flow in its part of the
grid.

""" BUS

BASE
STATION

A

BUS

Fig 1.1 - Project Schematic

1.5 Organization of the Report

Following this brief introduction about project idea, motivation and implementation
we have the subsequent report organized as follows.

Overall Project Design: It elaborates the project design and the main components of
the system.

Remote Terminal Unit : This section discusses how the various functions (like real
time sampling, A/D conversion and so on) at the RTU have been implemented using
the Intel 80196 microcontroller.

Base Station: The Graphical User Interface (GUI) that has been developed using
LabVIEW is explained here.

Distributed Network Protocol (DNP) 3.0: This protocol is being implemented in
this semester and here it is explained in detail. Along with the design, the
implementation of DNP in the project is discussed. Lastly the three layers of the
protocol are explained along with discussion on cross-layer communication.

Wireless Communication: This proposes a schematic for wireless communication in
place of wired one. The worked out details and issues of setting up wireless
communication are put forth.

Cyclic Redundancy Check (CRC): Here an error detecting algorithm which has
been used to ensure reliable communication is discussed. Also, hardware and software
implementation are of this algorithm are shown.

Experimental Results and Discussions: The hardware setup along with performance
analysis is shown. The measurement and computation results are also compared with
the calculated ones. Also, snap shots of the work with discussion is presented.

Conclusion: Presents summary of the work and suggests some scope for future work.

Appendix A contains the assembly codes written for 80196KC microcontroller.
Appendix B contains the labVIEW codes written for the Base Station.

2. Overall Project Design

The system has three major components —

1. Remote Terminal Unit: It is equipped with the tasks of real time sampling of
current and voltage signals, computation of root mean square values of current and
voltage along with average power, digital output for line or breaker control and
handler for communication with the base station.

2. Communication Setup: Communication is done over wireless medium using
distributed network protocol (DNP). Both the RTU and the base station use a
transceiver module for this purpose. A two way communication link provides the
interactivity between the two end points.

3. Base Station: This is aimed at monitoring and controlling the RTU remotely.
Apart from the communication handler, base station has a user friendly graphical
interface. It allows user to monitor instantaneous as well prolonged responses from
one or more RTUs.

Input

]

s

. Real Time
Graphical User Sampling
Interface
A A\ 4

Computation

Communication
Interface

Communication
Interface

Communication
Channel

Digital Output

Base Station

Remote Terminal Unit V
Output

Fig 2.1 - Block Diagram of the design

3. Remote Terminal Unit

3.1 Real Time Sampling:
High Speed Output unit (HSO)

The HSO triggers events at specific times with minimal CPU overhead. Events are
generated by writing commands to the HSO COMMAND register and the relative
time at which the events are to occur into the HSO_TIME register.

LDB HSO COMMAND, #what to do
LDB HSO TIME, #when to do it

Events can be based on Timerl or Timer2, such that whenever HSO TIME matches
the timer value the event loaded into HSO COMMAND is triggered. Up to 8 events
can be loaded into the HSO control at one point of time. More ever, normally the
events are cleared from the HSO control once the events are triggered. We have to
lock them into the HSO control such that they occur repeatedly until stopped.

Timing Considerations

This sampler samples 16 samples per sample for 4 cycles and then computes the rms
and average values.

Assuming input frequency to be 50 Hz,
Time between two successive samples = (1/50) * (1/16) sec
=1.25ms

Internal operation is based on the oscillator frequency divided by two, giving the basic
time unit known as ‘state time’. Given 12 MHz crystal on the kit —

State time = (2/12) us = 166.66 ns
Now, since up to 8 events can be loaded into the HSO control, it takes the HSO
control 8 state times to compare all HSO TIMEs with the timer value. In order to
avoid missing any of the events, it is desirable to make the timer increment every 8

state times.

Therefore, time between two successive timer counts = 8*166.66ns

=133 us
Hence, number of timer counts required between two successive samples = 1.25
ms/1.33us =937.5
~ 938

Note: Analog to Digital converter taker 158 state times for full conversion i.e. (158/8
~ 20) timer counts occur while the digital conversion is in process. Hence the
converter is ready by the time the timer reaches 938 the next time.

Thus, based on this we need to feed the following two events into the HSO control —

a) Start A/D sampling after 938 timer counts
b) Reset timer on 939" count

This sampler uses Timer2 for HSO timing. IOC2 sets Timer2 to count every 8 state
times and to count up. [OCO resets Timer2. T2CNTC sets to clock Timer2 internally.

A/D converter

AD _COMMAND is used feed the Analog to Digital converter. It is set to give 8 bit
digital output. The converter may be instructed to start sampling immediately or when
it is triggered by the HSO. This sampler uses A/D converter in the latter mode.
However if more than one A/D conversions are to be made then the converter needs
feeding repeatedly through AD COMMAND. A/D conversion complete interrupt is
enabled using INT MASK. The address of the Interrupt Service Sub-routine (ISR) is
stored at 6002h which is where the processor looks for the A/D complete ISR address.
A/D result is read from AD _RESULT register. Currently it samples 64 samples each
from 8 input channels in a cyclic fashion.

Summary of registers used by the real time sampler is given below —

HSO COMMAND | Load events into High Speed Output unit

HSO TIME Load the triggering time corresponding to the respective event
10C0.0 Reset Timer2

10C2.0 Timer2 counts every 8 state times

10C2.1 Count up

10C2.6 Enable locking of HSO commands

T2CNTC Clock Timer2 internally

AD _COMMAND Activate A/D converter

AD _RESULT A/D result

INT MASK To enable the A/D conversion complete interrupt

10

Timer Settings
1. Reset Timer2
2. Count every 8 state times
3. Clock Timer 2 internally

ADC Settings
1. Store ADC complete interrupt sub-routine address at 6002h
2. Enable A/D conversion complete interrupt

Load event 1 in HSO

1. HSO_COMMAND = Reset Timer 2 using Timer 2
2. HSO_TIME =939

3. Lock this event in HSO control

Load event 2 in HSO

1. HSO_COMMAND = Start A/D conversion using Timer 2
2. HSO_TIME =938

3. Lock this event in HSO control

| Start A/D by HSO |
& Y
Timer 2) NO Timer 2 YES
=93979 I =9387?
v
Read & Store
ADC result
Reset Timer 2
Y
YES

HSO No of
control Samples
cleared ? L 4 =647

NO No of
Channels

Sampled = 8 ?

NO

| Start A/D by HSO |

Start A/D
by HSO YES
| Clear HSO control |

I
v

| Proceed to Calculations |

Fig 3.1: Real Time Sampling Flow Chart

11

3.2 Computations:
Root Mean Square

Each of the analog channel needs to computed for its root mean square (rms) values
because —

a) Itis easier to deal with rms values rather than with individual samples.

b) Since the processing speed of the microcontroller is much faster when
compared to the transfer rates of the communication interface, this increases
the overall efficiency.

¢) Transmitting the large number of samples to the base station creates lot of
traffic in the communication medium.

d) Burdening the base station with processing overhead is not a nice idea.

The equations used to calculate the above are given below —

S,

S |-
<

>

i=1

Vrms =
II’H‘IS =

S| =
- >
3

The multiplication, addition and squaring operations can be easily carried, as these are
part of the instruction set of 80196. The divide operation is also trivial as the division
is only by 64. It is achieved by shifting the bits to the right six times. The operation
of interest is the square root function as this is not a standard function in the 80196
instruction set.

A look up table containing squares of all integers from 0 to 255 has been stored in
memory. First the number is compared with all the squares to determine the interval
between which it lies. A linear approximation is made to calculate the square root of
the number. Let x be the number whose square root needs to be calculated and it falls
between x1 and x2 (y1 and y2 are their respective square root). Then the square root
of x by this method will be

The error involved is within a few percent for the numbers concerned. Since we are
just calculating up to 2decimal places, the use of this method is justified. Let us take
an example of 110.

Actual Square root = 10.49
Square root by this method = 10.48

The following graph shows the differences between the actual and approximated

values of square roots. Note that the approximation is more erroneous for the lower
end of the number line, where the difference is the most.

12

Graph showing Actaul and appraximated Square root Yalues far same numbers

— Actual
— Approximated

Square Root

Hurmber

Fig 3.2: Comparison actual and approximated square root function

Average Power
The real time sampler assumes input signals to be alternately voltage and current

signals as follows —

Analog Input

Fig 3.3: Analog Input Arrangement

With this assumption we calculate the average power and power factor as follows —

VI’H‘IS I rms

3.3 Digital Output:

In addition to sampling and carrying out calculations, there is also a feature for remote
control. The idea here is to completely eliminate the need of an operator at the

13

transformer or breaker. All the readings / operations should be possible from remote
locations.

There are currently eight output channels (single bit). These can be used to operate
eight feeders. A high on the bit line would switch on the breaker and a low on the bit
line would switch off the breaker.

3.4 Communication Handler:

The RTU communicates with the base station via serial communication port.
Currently the communication is wired. Communication is two way and involves the
following exchanges of messages —

Request for RMS value

v

Send RMS Value

A

Base

Request for Average value
RTU

v

Station
Send Average Value

A

Digital Output

v

Fig 3.4: Interaction between Base Station and RTU

The frame format used for the requests is as follows

Bit 0 — Not used
Bit 1 - Defines whether it is a write or read operation. 1 — Write, 0 — Read
Bit 2 — For read it defines whether the read is Pavg or Vrms / Irms
For write it is not used
Bit 3 - Bit 7 — specify the channel

Reador | Prms gr
>< Wirke | Yrms S lems | | Channel | |

Fig 3.5: Frame Format of exchange message

14

The microcontroller kit SBC — 196 comes with an in-built serial port. The procedure
is as follows:

e An incoming request from the base station through the serial port and triggers
the serial port interrupt.

e In the interrupt service routine, the incoming is request is analyzed and the
required data is transmitted through the serial port

o After the interrupt has been serviced, the microcontroller returns to the start of
the sampling routine and not to its position before the interrupt. This is
essential to maintain proper timing for the sampling routines and to avoid any
discontinuity in the samples.

Settings

Serial port is set to operate in asynchronous mode 3. Baud rate is set to 2400. The
registers affected are —

BAUD RATE Selects serial port baud rate and clock source
This register selects the communication mode and enables or
SP_CON
- disables the receiver, even parity checking.
I0C1.5 Enables the TXD function of P2.0
INT MASK Enables serial port interrupt

Value fed to BAUD RATE is computed as —

F

___Fosc
BAUD_VALUE= g i Rate x 16

For baud rate of 2400, BAUD VALUE comes out to be 312.5 (139h). To select
internal clock bit 15 of BAUD RATE is 1. Hence the value fed to BAUD RATE is
813%h.

Stop Start Dnmenz)(na)(m)(ns)(na)(ml)(ns/ Stop

B Bits of Data »| T
Programable 9th Bit

|« 11-Bit Frame »|
AD111-BO

F 3

Fig 3.6: Frame Format for communication

For transmission of data from the microcontroller to the base station the format is
simple. Pavg, Vrms and Irms are all 2 byte responses. For RMS values the first byte
represents the number and the second byte represents the decimal. They are
transmitted as “byte.byte”. For average values the entire word represents a value.

15

1. Set Baud Rate
2. Set the serial in mode 3 using internal clock.

3. Enable the TXD function of P2.0

4. Store the address of serial interrupt sub-routine at 600ch
5. Enable the serial interrupt.

A 4

Main Program

Serial
Interrupt

[Go

to Interrupt Service Routine]

l

[Analyze Request]

!

WRITE Read / READ
Write
Request
\4
Write to output port
RMS Request for Avg
RMS /Avg
Value
Read RMS value and Read avg. value and
write to serial Port write to serial port
\4 v y
\ 4
Restart Sampling
form the Beginning
Fig 3.7: Flow Chart of serial communication handler at the RTU

16

4. Base Station

Labview, a software package from National Instruments, has been used for
programming the base station. Essentially, Virtual Instrumentation Software
Architecture (VISA) library is being used to communicate with the serial port.
Currently a wire runs from Computer serial port to RTU serial port.

Base station sends requests for the following three operations —

1. Toread RMS values of voltage and current.
2. To read average value of power.
3. To write the digital output.

The frame format used for the requests is as follows -

Bit 0 — Not used
Bit 1 - Defines whether it is a write or read operation. 1 — Write, 0 — Read
Bit 2 — For read it defines whether the read is Pavg or Vrms / Irms
For write it is not used
Bit 3 - Bit 7 — specify the channel

Read or | Prms or ! | | |
>< Wieite | Yrms S loms Channel

Fig 4.1: Frame Format of exchange message

Currently the frame format supports 32 Inputs / Outputs. Based on the three
operations the graphical user interface provides the following three modes —

1. Update the values of Vrms, Irms, Pavg and power factor of a line.
2. Monitor Vrms, Irms, Pavg and power factor of a line in a continuous fashion.
3. Send digital output to a line.

A line here refers to two inputs (voltage and current) and one output.

After sending request for reading RMS or average values, the GUI waits for the RTU
to respond. RTU responds with two bytes which are interpreted by the GUI as follows

a) If the reply is for RMS request, then the first byte is interpreted as the decimal
part and second byte as integral part i.e. “bytel.byte2”

b) If the reply is for average value request, then the first byte is interpreted as the
lower byte of the number and the second byte as the upper byte i.e. “byte
byte”

The byte value received at base station serial port is converted into 2 hexadecimal
characters. The ASCII character represented by this byte is read by Labview. Using
the various subroutines in Labview this is then converted into a meaningful decimal
value. In continuous mode the program continually sends requests and obtains fresh
data every 3 seconds.

17

\ 4
[Send Data Request]

\ 4
Read Data

! !

[Send Data] [Display Data

| |
|

[Wait 3 seconds]

Digital
Output ?

Fig 4.2: Graphical User Interface (GUI) flow chart

18

5. Distributed Network Protocol (DNP) 3.0

5.1 Introduction

Protocols define the rules by which devices talk with each other. DNP 3.0 is a
protocol for transmission of data from point A to point B using serial and IP
communications. It provides rules for substation computer and remote terminal unit
(RTU) to communicate data and control commands. Data communication may
involve transfer of analog input data that conveys voltages, current and power.
Control commands may be to close or trip a circuit breaker, start or stop a motor, and
open or close a valve. DNP3 is intended for Supervisory Control and Data Acquisition
(SCADA) applications. Some of the features of DNP are —

1. Secure configuration/file transfers
2. Addressing for over 65,000 devices on a single link
3. Time synchronization
4. Broadcast messages
5. Data link and application layer confirmation
5.2 Design

Communication circuits between the devices are often imperfect. They are susceptible
to noise and signal distortion. DNP3 software is layered to provide reliable data
transmission. Layering also helps to organize the transmission of data and commands.
DNP3 was originally designed based on three layer of the OSI seven-layer model:
application layer, data link layer and physical layer. The physical layer defines most
commonly a simple RS-232 or RS-485 interface.

Application Application
Layer Layer
Link Layer Link Layer
Physical Media
Physical Layer / / Physical Layer

Fig 5.1 - Three layer model of DNP 3.0

Few typical system architectures where DNP3 is used are —
1. One-on-One
2. Multi-drop
3. Hierarchical

19

5.3 Implementation

Multi-drop system architecture is being used for the purpose of this project. Here one
master station (called substation) communicates with multiple outstation devices
(called RTU). It was implemented as follows —

DNP3 DNP3 DNP3 DNP3
Master Outstation Outstation Outstation

Fig 5.2 — Multi-drop DNP3 system architecture

5.4 Layering

Data communication was layered into the DNP protocol as follows —

Measured Control Measured Control
Data Signals Data Signals
A A
A 4 \ 4
User Code User Code
DNP3 DNP3
Link Layer Link Layer
RS-232 RS-232
User Request
—_
//
/7
4_—
Response
BASE STATION RTU

Fig 5.3 — Communication layers and data flow

20

Data exchanged:

1) Measured Data - is gathered by remote terminal unit (RTU) and sent over to
the base station. These include RMS voltage, RMS current and average power.

2) Control Signals - are issued by base station to RTU. These include digital logic
bits at the RTU end.

4+ 5.4.1 User Code Layer

User code layer processes the measured data and the control signals. User code at
base station creates user interface and creates request to be sent over to the RTU. User
code at RTU processes the user request and responds to it.

+ 5.4.2 DNP3 Link Layer

Link layer receives data from User Code Layer and has the responsibility of making
the physical link reliable. It does this by providing framing of data, error detection and
duplicate frame detection. Link layer sends and receives packets which are called
frames. DNP3 frame consists of a header and data section as follows —

DNP3 Frame

Header Data

The header specifies the frame size, contains data link control information and
identifies the DNP3 source and destination device addresses. The data section is
commonly called the ‘payload’ and contains data (measured data or control signals)
passed down from the layers above i.e. the User code layer. The header was
implemented as follows —

Header

Sync Length Link Destination Source CRC
Control Address Address

= Sync — It constitutes two ‘synchronize’ bytes that help the receiver identify
where the frame begins. The byte we have used is 01111110.

= Length — It is one byte parameter which specifies the number of bytes of
data excluding CRC bytes, attached along with the frame.

= Link Control — It consists of a single byte which is used by the sending and
receiving link layers to coordinate their activities. In this implementation
receiver while responding back sends an acknowledgement byte
(10101010) in the link control parameter.

= Destination Address — It specifies the DNP3 device for which this frame of
data is intended. Only this particular DNP3 device is supposed to process

21

the data. It is a two byte address which implies there could be 65536
possible addresses. 12 addresses are reserved and hence 65520 individual
addresses are available.
Source Address — It specifies which DNP3 device sent the message. It is
again two bytes long. This enables the receiver to know where to direct its

response.

CRC - It stands for Cyclic Redundancy Check and is used for detecting

communication errors in the header. This implementation uses one byte
CRC for DNP3 frame header.

The data part of the DNP3 frame contains CRC checks for every 16 bytes of data.
However the last remaining chunk of data which may be less than 16 bytes also has
CRC. Maximum data payload in one frame is 250 bytes excluding the CRC checks.
Following is how a data frame is organized.

Data

Data (16 bytes)

CRC

Data (16 bytes)

CRC

Data CRC

In this implementation the base station has been assigned the address FF H and RTU
has been assigned the address 01 H. With this a request sent from base station to the

RTU looks like —
Link Destination Source
Sync Length CRC Data CRC
y & Control Address Address
2 Byte 1 Byte 1 Byte 2 Bytes 2 Bytes 1 Byte 1 Byte 1 Byte
01111110 00000000 11111111
01111110 00000001 11111111 00000001 11111111 00111001 Data/Control CRC

If the request sent by the base station is ‘data request’ then the RTU responds back as

follows -
Link Destination Source
nc Length R Data R
Sy g Control Address Address CRC CRC
2 Byte 1 Byte 1 Byte 2 Bytes 2 Bytes 1 Byte 2 Bytes 1 Byte
01111110 11111111 00000000
01111110 00000010 10101010 111111 00000001 11100111 Data value CRC

22

4+ 5.4.3 Physical Layer (RS-232)

It receives the frame from the Link Layer and the encoding and modulation of data.
RS-232 serial communication is used as the physical layer.

Encoding: RS-232 uses Non-Return to zero (NRZ) encoding. In NRZ encoding
logical ‘0’ is represented by one line state and logical ‘1’ by another. Data
transmission starts with a START bit which is logical ‘0’ and ends with a STOP bit
which is logical ‘1°.

START DATA STOP

Start bit=10 no1oo011 0111 GStopht=1

Idle level |_| Tdle level

Fig 5.4 — Data transmission in RS-232

RS-232 inverts the signals and so logical ‘0’ is +10V while logical ‘1’ is -10V. The
driver and receiver logic level is shown below.

15V 15V
Logic ‘0’ Logic ‘0’
5V
3V
3V
SV
. , Logic ‘1’
Logic ‘1
15V 15V
Rs-232 Driver Rs-232 Receiver

Fig 5.5 — RS-232 driver and receiver logic level
Physical Medium: The implementation uses wired medium for communication. For

wireless communication BiM-418-F transceiver chips can be used. It provides low
cost solution to implement a bi-directional short range radio data links.

23

6. Schematics of Wireless Communication

Wireless communication capability is provided by BiM-418-F transceiver chips.
Salient features of this transceiver chip are —

* 30 meter range without buildings

= Single 4.5-5.5 supply

= Half duplex at up to 40 KBits/s

* 418 MHz

The transceiver being half duplex, it can transmit and receive one at a time. Thus we
need an additional bit to set the communication mode (receive/transmit) of the
transceiver both at the base station and the RTU. Two pins TX Select and RX Select
are provided in the transceiver for this purpose. They can be configured as followed —

TX Select RX Select Operation
1 1 Power Down
1 0 Receiver Enabled
0 1 Transmitter Enabled
0 0 Self-test Loop

The communication setup between the base station and RTU is shown below -

Antenna
TXD —» BiM-418-F |+ -.-.-.: -
TX Select RX Select : Antenna 4+— TXD
0 1 P N - <»| BiM-418-F
Transmitter : —» RXD
é TX Select RX Select
Antenna : 1/0 0/1
RXD <«— BiM-418-F |l¢— ------- -
RTU
TX Select RX Select
1 0
Receiver
BASE STATION

Fig 6.1 — Wireless communication setup

24

The RTU has one transceiver for reception followed by transmission of data. Whereas
the base station has one transceiver dedicated for transmission and another dedicated
for reception. This makes communication at base station to be full duplex. Thus, the
communication setup allows the base station to issue requests to some RTU while
receiving data from some other RTU at the same time. The RTU however doesn’t
need to be full duplex as it just responds to the user requests from the base station.

The TXD pin of the transceiver operates in the range 0-5V whereas the RS-232 driver
encodes data into +10V / -10V signals. Thus +10V/-10V signal from the RS-232 port
needs to be converted to 0V/+5V (since logical ‘0’ is +10V in RS-232). The following

circuitry was designed for this purpose.

... R4
5V'_J—: T
VB.I....

Clutput 0V -10%

R6

Uz .

R ?W ’

F5-232 Cutput: +10V £-10Y

Clutput: 0V [+5%.

A
Dok -
DOPAMP
RS Lo
ApA, CRT
Sk iy
o T
oL Output -9/ +5Y
o R4
—\AA—
ok
R RI3
TV ="z oy
o Sk

Fig 6.2 - Circuit Schematic to feed RS-232 output to Transceiver TXD pins

Similarly the RXD pin of the transceiver produces digital output 0/5 V. Before
feeding this signal to RS-232, we need to convert it to +10V/-10V logic. The

following figure shows how this is done.

25

U3 .

Qutput: 5% 7 +5Y 100 -0V

OPAMP |

RT

Sk

Output: 0v / -10V

Output 0v /45y, | &Y — 1K
VT o o
T CRI13
T o

Fig 6.3 - Circuit Schematic to feed Transceiver RXD output to RS-232

Working: Following flow chart illustrates how the transceiver communication operates

v

GUI Set Transceiver in
U Receive mode
Y Y

User
Request

Data
Request

Transmit Request }---------cooo___ +» Receive Request

|

Set Transceiver in
Transmit mode

' |

Receive Response |¢----------------- - Transmit Response
I | I
Base Station RTU

Fig 6.4 — Flowchart for wireless communication between Base Station and RTU

26

7. Cyclic Redundancy Check

7.1 Objective of CRC

Cyclic redundancy check or CRC is an error detection algorithm. It is used in the
DNP 3.0 protocol. CRC algorithms are designed to maximize the probability of error
detection. The probability that a message contains errors and the CRC stills checks
out is very low. This procedure ensures the validity of the data received.

An (n+1) bit message is represented by a polynomial of degree n. Then using CRC
algorithm k bits are computed from the (n+1) bit message. The additional k bits are
sent over to the receiver which then again computes these k bits using the same
algorithm. If the k bits computed matches with the k bits received by the receiver then
there is no error, else error is considered to be detected.

7.2 Algorithm

Given a message polynomial M(x) of degree n, we select a divisor polynomial C(x) of
degree k. Then our goal is to find a polynomial P(x) of degree (n + k) such that P(x) is
exactly divisible by C(x). This is done as follows —

e Multiply M(x) with x* to obtain T(x)
e Divide T(x) by C(x), obtain remainder as R(x)
e P(x)=T(x)—-R(x)

Different divisor polynomials are available.

Example: Message — 11100101, Divisor —C(X) =X’ +x* +x+1, 1101 which is

equivalent to 1101. Firstly, four zeros are appended at the end of the message. The
resulting bit pattern is then divided by 1101. The remainder obtained is the CRC of
the message. It is appended to the original message (without the zeros).

10101100
11011 111001010000
Generator 11011
Polynomial BGEEEED
00000 ries=iEy
11110
11011
01011
= 00000
10110
11011
11010
11011
00010
00000
00100
CO000

Remainder

Fig 7.1 — Obtaining CRC for a ‘Message’ using a ‘Generator Polynomial’

27

7.3 Hardware Implementation

In practical applications, CRC is implemented by the use of registers as shown in the
figure below. For hardware implementation, shift registers are used while memory
allocation suffices for software implementation. The message bits are fed one by one
starting with the most significant bit. After all the message bits have been fed, the
resulting state of the registers gives the CRC of the message. The same
implementation is used for verification of CRC at the receiver end. The incoming
message is fed to the setup bit by bit. After the last bit is fed, the registers should all
be 0.

Message

U
¢

Ve

N

AN
\\A/ X0 \

Fig 7.2 - Schematic for hardware implementation of CRC

Table 7.1

S. No. X0 X1 X2 X3 Message Bit
1 0 0 0 0 1
2 1 0 0 0 1
3 1 1 0 0 1
4 1 1 1 0 0
5 0 1 1 1 0
6 1 1 1 0 1
7 1 1 1 1 0
8 1 0 1 0 1
9 1 1 0 1 0
10 1 0 1 1 0
11 1 0 0 0 0
12 0 1 0 0 0

CRC 0 0 1 0

As seen from the table the CRC is obtained is 0100 (X3 — X0) which matches the
value obtained from long division.

28

7.4 Software Implementation

Here instead of shift registers memory variables are used. Using the same example we

compute the CRC as follows.

Templ, Temp2, Temp3,

x3,x2,x1,x0=0

|

Message

|

A 4

Shift out the MSB

|

Templ = x3 XOR MSB |

|

Temp2 = x3 XOR x0 |

|

Temp3 = x3 XOR x2 |

|

| x3 = Temp3 |
'

| x2 =x1 |
|

| x1 = Temp2 |
.

| x0 = Templ |

Message = 0

CRC=x3 x2 x1 x0

Fig 7.3 — Flowchart for software implementation of 4-bit CRC

The base station and the RTU implement 8-bit CRC using the polynomial
C(x) = x* + x> + x+1. The above methodology is extended for 8-bit as well.

29

8. Experimental Results and Discussions

This chapter gives details of the experimental setup and results obtained. The hardware
schematic is shown in figure 8.1. The PC implements the graphical user interface (GUI)
whereas the Intel 80196 microcontroller is mainly used for RTU computation.

Analog Inputs
GUI vl il v2 2 v3 i3 v4 4
Serial
RS-232 |« P RS-232
Communication

RRRERRE!

D0 DI D2 D3 D4 D5 D6 D7

Desktop PC (Base Station)
Digital Output
80196KC kit (RTU)

Fig 8.1 — Hardware schematic

8.1 Performance

To analyze system performance a signal S = (2.5 + 2.5*sinwt) was fed to channel 1
and 2 both. Offset was given so as to ensure that the input is in the range of 0-5 Volts.
Observed values were —

Vrms = 3.03 Volt

Irms =3.03 Volt

Average Power = 9.19 Watts
Power Factor = 0.9978

Theoretical values can computed as follows -

Input, V =2.5+2.5%sinwt
[=2.5+2.5*%sinwt

Expected values of Vrms and Irms are —
20

Vrms =+ { (1/2m) * [(2.5 + 2.5*sinwt)” dwt }
0

30

2n
=~ {(1/2n) * | (6.25 + 6.25*sin’wt + 13.5*sinwt) dwt }
0
=+ {6.25 + 6.25/2)
=3.06 Volt
2n
Value of Average Power = (1/2m) * [(2.5 + 2.5*sinwt)* dwt }
0
2n
= (1/2m) * [(6.25 + 6.25*sin*wt + 13.5*sinwt) dwt }
0
= {6.25 + 6.25/2)
=9.375 Volt
Irms = Vrms
Power Factor = 1 (Since the V and I are just the same signal)

Error in observed values (for Vrms / Irms) = (3.06-3.03)*100/3.06 = 0.98 %

Error in observed values (for Average Power) = (9.375-9.19)*100/9.375 =1.97 %

8.2 Sources of Error

1. Quantization: Observed values are based on 16 samples per cycle while the
expected values are based on continuous spectrum. Improving sampling
resolution will add more insensitivity to error.

2. Square root: Linear interpolation is applied while computing the square root.
This approximation is negligibly erroneous only for very high numbers.

3. Frequency mismatch: The real time sampler assumes the input frequency to be
50 Hz but in reality there are always deviations from 50 Hz. Frequency
variations will cause more or less than 16 samples to be taken in one cycle,
thereby affecting RMS values drastically.

31

8.3 Screen Captures of the Graphical User Interface

Shown below is the Graphical User Interface for the digital output operation. The
“Operate Line” command simply toggles the state of the selected line. That is if the
line is on, it is switched off and vice versa

Analog Inpuk Digital Cukpok

Seleck Line
Ir ‘ OPERA I

Fig 8.2 — Digital output control at Base Station

The base station can operate in two modes for data acquisition i.e. the continuous
update mode and the discrete update mode. Shown below is the continuous update
mode. The four plots represent RMS voltage, RMS current, average power and power
factor for line 1. (All the voltages and currents have to be scaled down to 0-5V
through a signal conditioning module, before they can be fed to the RTU). The string
read gives the hexadecimal equivalent of the bit stream read by the base station. This
contains 9 bytes of header, 2 bytes of data and 1 byte of CRC for the data.

32

Analog Input Digital Output

pdate Mode - Continuous Mode Input Line

R Line 1 = l

rms Yolbage
rms Current

Power Fackor

WWaveform Chart Ayerage Power

Amplitude

Tirne:

String Read
JE7E 0244 FFFF 0001 E746 SAEA

Fig 8.3 - Continuous Update mode

Shown below is the discrete update mode at the Base Station. Data is only acquired
upon clicking the update button. The four dials show the values of RMS voltage,
RMS current, average power and power factor. The string read again gives the
hexadecimal equivalent of the bit stream read by the base station.

33

Analog Input | Digital Output

Update Mode - Continuous Mode Input Line

- Lire 1

RM35 Voltage
LPDATE
I

p 225295 75 7

1.75 3.25

-~

-

3.5
3,757
4_
L 0,75 4.25
%05 4.5
o025 475
s |:| 5 LN
! k3
3,03

.91

RMS Current

.,--"TI_I'Il,

Y, 2.25%%2,75 _/
L 17S 3.25
1.5 357
LS 3,75~
1 4_
075 4,25
0.5 4.5
T 025 475~
i |:| 5 LN
- b
53,02

Power Factor

0.a5
A
0.7

0757
0.8-
0.85 _

0.9
95

String Read

FEVE 02448 FFFF 0001 EVSS SA7G

Fig 8.4 - GUI Screenshot

34

Photographs of the setup

35

9. Conclusion

The system with the Base Station, RTU and the Communication handler was setup
successfully. RTU could sample 8 analog inputs and produce 8 digital outputs. RTU
computes RMS and average values of sampled data. Base Station initiates
communication from the RTU and retrieves data from it. This data is then displayed
graphically in the graphical user interface (GUI). Base Station and RTU communicate
via serial communication through RS-232 ports. DNP 3.0 protocol provides protection
against noise and signal distortion. Cyclic Redundancy Checks provides
communication reliability. Schematics for wireless communication with compatibility
details are provided.

DNP3 causes transmission delay between Base Station and RTU to be around half a
second. This is quite reasonable considering that it is not a very high speed
application device. Percentage error of the computations performed by the RTU is
1.32, which is within tolerable limits.

Scope for future work —

1. In case of any emergency the RTU should be able to initiate communication with
the Base Station. This requires analyzing the measured results at the RTU followed by
communication setup.

2. RTU can be provided with external memory which could be used to store history of
measured data. This could serve just as a black box in case of any damage to the

RTU.

3. The kit used in this project is a general platform for development. We could make
RTU more application specific by using a stand alone 80196 microcontroller.

36

10. References

[1] SBC-196 Technical Reference Manual — Dynalog (India) Limited
[2] SBC-196 User’s Manual — Dynalog (India) Limited, October 2001, Rev. 1.0

[3] http://www.intel.com/design/mcs96/

[4] Virtual Instrumentation using LabVIEW — Sanjay Gupta and Joseph John, Tata
McGraw-Hill, 2005 .

[5] http://www.dnp.org

[6] A DNP3 Protocol Primer — Ken Curtis, Woodland Engineering; Revision A, 20
March 2005.
[7] Computer Networks, A systems approach 3 Edition — Larry L. Peterson and

Bruce S. Davie, Morgan Kaufmann Publishers 2004.

37

Appendix A: Assembly Codes

Assembly Program Written with 80196KC Microcontroller

« 3k 3 2 sk s s sk sk sk sk sk s s sk sk s sk sk sk sk sk sk sk sk sk s sk sk s sk sk sk sk sk sk s sk sk s sk sk st sk sk sk sk sk sk s sk sk s s sk sk sk sk skeoskoske seoskosk skeskosk ok
>
3k

; 8096.INC - DEFINITION OF SYMBOLIC NAMES FOR THE I/O REGISTERS
OF

; THE 8096 AND THE 80C196

; (C) INTEL CORPORATION 1983

« 3 3t sfe sk e s sfe e sfe she ke sfe sfe sk st sfe sk e sk ske e sk she sk st sfe sk sk sk she sk sk she sl st sfe sk sk sfe sk sie st she ke sk she sk st sfe sk ke sfe she sk st sfeoske ste sfeskeske sfeseoske skeskeosk sk
5
seskosk

;
.k
)/

:* 8096 SFR's

; ¥/

RO EQU O00H:WORD ;R ZERO REGISTER
AD COMMAND EQU 02H:BYTE ; W
AD RESULT EQU 02H:WORD ;
AD LO EQU 02H:BYTE :R
AD HI EQU O03H:BYTE ;R
AD TIME EQU O03H:BYTE ;W
HSI MODE EQU O03H:BYTE ; W
HSO TIME EQU 04H:WORD ; W
HSI TIME EQU 04H:WORD ;R
PTSSEL EQU 04H:WORD ;W
HSO COMMAND EQU 06H:BYTE ; W
HSI STATUS EQU O06H:BYTE :R
PTSSRV EQU 06H:WORD ;W
SBUF EQU 07H:BYTE ;R/W
INT MASK EQU O0SH:BYTE ;R/W
INT PEND EQU O09H:BYTE ;R/W
WATCHDOG EQU O0AH:BYTE ; W WATCHDOG TIMER
TIMERI EQU O0AH:WORD ;R
TIMER2 EQU O0CH:WORD ;R
10C3 EQU OCH:BYTE ;W
BAUDRATE EQU OEH:BYTE ; W
PORTO EQU OEH:BYTE ;R
PORTI EQU OFH:BYTE ;R/W
PORT2 EQU 10H:BYTE ;R/W
SP_CON EQU IIH:BYTE ; W
SP_STAT EQU IIH:BYTE ;R
10C0 EQU ISH:BYTE ; W
10S0 EQU I5H:BYTE ;R
I0C1 EQU 16H:BYTE ; W
10S1 EQU 16H:BYTE ;R
PWMO CONTROL EQU 17H:BYTE ; W
PWMI1 CONTROL EQU 16H:BYTE ; W
PWM2 CONTROL EQU 17H:BYTE ; W

PWM_CONTROL EQU I17H:BYTE ; W

SP EQU 18H:WORD ;R/W
. 80C196 SFR's

10C2 EQU OBH:BYTE ; W
INT PENDI EQU 12H:BYTE ;R/W
INT MASKI EQU 13H:BYTE ;R/W
WSR EQU 14H:BYTE ;R/W
10S2 EQU 17H:BYTE ;R

T2CNTC EQU OCH:BYTE ;R/W

Assembly Code.asm 4/18/2006 2:06 PM

; Scans and Operates on Analog Input

include 80cl196kc.inc

rseg at 1Ah
ax: dsw 1
bx: dsw 1
CcX: dsw 1
dax: dsw 1
ex: dsw 1
x: dsw 1
temp: dsw 1
disp_data: dsw 1
disp_adrs: dsw 1
disp_dcml: dsb 1
cmd_mode: dsb 1
square: dsw 1
pointer: dsw 1
iter: dsw 1
accum: dsw 1
counter: dsb 1
rms: dsw 1
rms_pointer: dsw 1
rms_hist: dsb 1
rms_recent: dsw 1
samples: dsb 1
destination: dsw 1
channel : dsb 1
templ: dsb 1
temp_2: dsw 1
temp2: dsw 2
loop_count: dsb 1
interl: dsw 1
inter2: dsw 1
disp_data_temp: dsw 1
disp_data_tmpl: dsw 1
table_ptr: dsw 1
pointer_2: dsw 1
power_accl: dsw 1
power_acc2: dsw 1

;Registers for DNP 3.0 implementation

receive_flag: dsb 1
send_flag: dsb 1
synchronize: dsb 1
my_add_L: dsb 1
my_add_H: dsb 1
master_add_L: dsb 1
master_add_H: dsb 1
ACK: dsb 1
read buffer: dsb 1
transmit_bufl: dsb 1
transmit_buf2: dsb 1
CRCin dsb 1
CRCout dsb 1
CRCloop dsb 1
X0 dsb 1
x1 dsb 1
X2 dsb 1

Page 1 of 16

Assembly Code.asm 4/18/2006 2:06 PM

X3 dsb 1

x4 dsb 1

x5 dsb 1

X6 dsb 1

X7 dsb 1

tempIN dsb 1

tempRegl dsb 1

tempReg?2 dsb 1

tempReg3 dsb 1

long_power equ power_accl :long

st equ sp “byte T

sph equ (sp+1) byte

long_bx equ bx long

al equ ax byte

ah equ (ax+1) byte

bl equ bx byte

;bh equ (bx+1) byte

cl equ CcX byte

ch equ (cx+1) byte

dl equ dx byte

dh equ (dx+1) byte

el equ ex byte

eh equ (ex+1) byte

L equ X tbyte

Th equ (fx+1) :bhyte

disp_datO equ disp_data zbyte

disp_dat2 equ (disp_data+1) tbyte

disp_adrO equ disp_adrs -byte

disp_adr2 equ (disp_adrs+1) :byte

temp_1 equ temp “byte

temp_h equ (temp+1) tbyte

buf: dsb 1

buf_data: dsb 1

checkl: dsb 1

check2: dsb 1

read_rg: dsb 1

2 KEY CODE DECLARATIONS

brk_key equ 10h byte

“library routines adrs T

time_lib equ 4002h zword

print_lib equ 4006h zword

serial_lib equ 400ah zword

hex_Il1ib equ 400eh zword

stack_Imt equ 6200h zword

user_stack equ 6300h zword

buffer equ 6132h zword ;string

srl_sts_sav equ 615Bh tbyte
cseg at 7000h

; Program Starts Here ;

Page 2 of 16

Assembly Code.asm

4/18/2006 2:06 PM

start:

33 This Slave®"s Master®s Address is ffff h
33 This Slave"s address is 0001 h

Synchronize byte recognized by this slave is 01111110 b

1db synchronize,#01111110b ;synchronize byte

1db my_add_H,#00h ;higher byte of slave address
1db my_add_L ,#01h ;lower byte of salve address
1db master_add_H,#0ffh ;higher byte of master address
I1db master_add_L,#0ffh ;lower byte of master address
1db ACK,#10101010b ;ACK byte for link control

;> Initialize flags used for DNP communication

1db receive_flag,#00h
1db send_flag,#00h

1d sp,#6400h

;1d bx,#msg

;1db el ,#3
;lcall serial_lib

;> This call creates square root look-up table
;; Once created this call can be commented

;lcall sqgrt_table

;; Setting pointers for data storage

1d rms_pointer ,#9000h
I1db rms_hist,#05h
1d rms_recent,#8FE8h

settings for serial communication

iis Baud Rate = 2400

33 Clock Source = XTAL1
1db BAUDRATE ,#39h

1db BAUDRATE, #81h

1db SP_CON, #1bh

1db 10C1,#20h

1d Tx,#600ch

1d bx,#ser_req

st bx, [x]

1db read_rg,#00h

;; Start sampling - take 16 samples per cycle for 4 cycles i.e. 64 samples

1db samples,#40h ;No of samples to acquire

Page 3 of 16

Assembly Code.asm 4/18/2006 2:06 PM

1d destination,#8000h ;starting address of stored values

; Timer settings

I1db ioc2,#40h ;count every 8 machine states, count up, enable comman(
I1db ioc0,#02h ;reset timer2

; HSO unit settings - sampling frequency of 16 samples/cycle

I1db HSO_COMMAND,#11001111b ;CAM lock, start AD conversion based on timer2
1d HSO_TIME,#03aah ;938d sampling interval (shd be 03aah)
1d fx,#0000h

; Interrupt Settings

1d bx,#6002h

1d ex,#rd_adc

st ex, [bx] ;write address of interupt service subroutine
1db channel ,#10h

I1db ad_command, channel ;start conversion by hso

I1db int_mask,#42h ;enable AD complete interrupt

ei

; Reset timer - sampling frequency of 16 samples/cycle

1db HSO_COMMAND,#11001110b ;CAM lock, reset timer2

1d HSO_TIME,#03abh ;time to reset timer2

pusha

1db WSR,#01h ;switch to horizontal window 1
1db T2CNTC,#01h ;clock internally

popa

Wait: ;

;> Wait for 16 samples to be taken

jne wait

incb channel ;scan next channel

1db samples,#40h

inc destination

cmpb channel ,#18h

je fin_samp

1db ad_command, channel

sjmp wait ;again wait for next 16 samples
fin_samp:

;> all 8 channels sampled; proceed to calculations

Page 4 of 16

Assembly Code.asm

4/18/2006 2:06 PM

no_loopback:

loop:

cmpt:

power :

n_ch_p:

avg_pw:

id
Idb

1db
Icall
st

inc
inc
djnz

I1db ioc2,#80h ;clear CAM

8 channels have 8 RMS values and 4 Pavg values

Both RMS and Avg values yield 2 bytes of data

one time sampling of all 8 channels yield 24 bytes of data

we store 4 time sampling result

In the 5th time we loop-back i.e. overwrite the 1st time result

cmp rms_recent,#9060h ; Is it the 5th time

jne no_loopback

1d rms_recent,#8fe8h ; Yes, then overwrite the 1st time result

add rms_recent,#18h ; No, simply store the result in the next loca

; Compute the RMS values of the 8 channels

pointer,#8000h
cl,#08h

counter ,#40h
r_m_sq
rms, [rms_pointer]

rms_pointer
rms_pointer
cl,cmpt

;> Compute Pavg = Summation(Vi X li)/ n
;> Assume chO to be voltage,chl to be current and so on

id
id
Idb

1db
1d
Id
Id
1d
;Id

1db
1db
mulub

add
addc
inc
inc
djnz
shr
shl
add

;shri

pointer ,#8000h
pointer_2,#8040h
loop_count,#04h

counter ,#40h

bx ,#0000h
cx,#0000h
power_accl,#0000h
power_acc2,#0000h
cXx,#0000h

fl, [pointer]
Th, [pointer_2]
temp,fl,Th

power_accl, temp
power_acc2,cx

pointer
pointer_2
counter,avg_pw

power_accl,#06h
power_acc2,#0ah
power_accl,power_acc2

long_power ,#06h

Page 5 of 16

Assembly Code.asm 4/18/2006 2:06 PM

st power_accl, [rms_pointer]
inc rms_pointer

inc rms_pointer

;1d disp_data,power_accl
;lcall disp

add pointer ,#0040h

add pointer_2,#0040h

djnz loop_count,n_ch_p

;enable serial port interrupt here

;1db INT_MASK, #40h

;; all 8 channels and computed once
;; Repeat the entire process again

next: djnz rms_hist, n_sample
1d rms_pointer,#9000h
1db rms_hist,#05h
n_sample: Ijmp start ;do next sampling
idle: sjmp idle ;never reached
; Main program ends :
; Sub routines start here ;

Sub routine to compute root mean square value

@arg pointer - points to first sample

@arg counter - no of samples to compute rms of

@return rms - contains the root mean square value
r_ msq: Id square,#0000h
sum_sq: Idb fl, [pointer]

1db th,fl

mulub temp,th,fl

shr temp,#06h

add square,temp ;"square” stores the sum of squares of acquired data

inc pointer

djnz counter,sum_sq

cmp square ,#0000h

jh intplt

1d rms,#0000h

Page 6 of 16

Assembly Code.asm

4/18/2006 2:06 PM

ret

intplt: Icall
sub
1db
shll
sub
divu
1d
1db
1db

cmpb
jne
incb
no_cor: Id
ret

; @return
; @return
; @return
; @return
traverse:
search:

found:

traverse
temp2,square, interl
templ,#10h
temp2,templ
temp,inter2,interl
temp2,temp

dx,temp2

th,fl

fl,dh

f1,#00h
no_cor
fh

rms, fx

; Sub Routine to travers the square root table

fl - holds the floor sqgrt integer

fth - holds the ceil sqrt integer
interl - square of fl
inter2 - square of fh

1d table_ptr,#7500h
1db al ,#00h

inc table_ptr

inc table_ptr

incb al

1d temp, [table_ptr]
cmp temp,square

je found

jh found

sjmp search

1d inter2,[table_ptr]
dec table_ptr

dec table_ptr

1d interl,[table_ptr]
1db th,al

subb fl,al ,#01h

Sub routine for a/d conversion complete event

rd_adc: Idb
stb
djnz
cmpb
sjmp
cont: inc
1db

finish: ret

fh,ad_hi
Th, [destination]

samples,cont
samples,#00h
finish

destination
ad_command, channel

;load low order byte
;storing sampled data to memory

;increament destination address
;start conversion by hso

Page 7 of 16

Assembly Code.asm

4/18/2006 2:06 PM

Subroutine to handle serial interrupt

ser_req:

; Subroutine to handle

ri_req:

pusha

;Reset sampling

1db
id
1db

samples,#40h
destination,#8000h
channel ,#10h

;Check for RI/TI interrupt

1db
andb
jne
andb
jne
sjmp

Icall
sjmp
Icall

popa
ret

buf,SP_STAT
checkl, buf,#40h
ri
check2,buf,#20h
ti

ser_fin

ri_req
ser_fin
ti_req

RI interrupt
buf _data,SBUF

portl,#00000001b

;; For each byte of DNP header we assign a flag number in receive_flag
;; This flag number is used to distinguish a particular byte of DNP header

syncl_recv:

sync2_recv:

cmpb
Jgt

receive_flag,#00000000b
sync2_recv

;; Check the first synchronize byte

émpb
jne
incb

call
1db
call

simp

cmpb
Jgt

buf_data,synchronize
clear_recvl
receive_flag

initializeCRC
CRCin,buf_data
computeCRC
fin_write

receive_flag,#00000001b
length_recv

; compute CRC for DNP header

Page 8 of 16

Assembly Code.asm 4/18/2006 2:06 PM

;> Check the second synchronize byte

émpb buf_data,synchronize
jne clear_recvl
incb receive_flag
1db CRCin,buf_data ; compute CRC for DNP header
call computeCRC
sjmp fin_write
length_recv: cmpb receive_flag,#00000010b
jot link_recv

;; Store remaining frame length (to be received)

incb receive_flag
I1db CRCin,buf _data ; compute CRC for DNP header
call computeCRC
sjmp fin_write
link_recv: cmpb receive_flag,#00000011b
jot destl_recv

:; Check the link control

;jump to clear_recv if check fé

e

incb receive_flag
I1db CRCin,buf _data ; compute CRC for DNP header
call computeCRC
sjmp fin_write
destl_recv: cmpb receive_flag,#00000100b
jot dest2_recv

:; Check the upper byte of destination address

émpb buf_data,my_add_H

jne clear_recvl
incb receive_flag
I1db CRCin,buf_data ; compute CRC for DNP header
call computeCRC
sjmp fin_write
clear_recvl: sjmp clear_recv
dest2_recv: cmpb receive_flag,#00000101b
jot srcl_recv

;; Check the lower byte of destination address

émpb buf_data,my_add_L

jne clear_recv
incb receive_flag
1db CRCin,buf_data ; compute CRC for DNP header

Page 9 of 16

Assembly Code.asm

4/18/2006 2:06 PM

srcl_recv:

Src2_recv:

crc_recv:

data_recv:

dataCRC_recv:

call computeCRC
sjmp fin_write

cmpb receive_flag,#00000110b
jot sSrc2_recv

;' Check the upper byte of source address

cmpb buf_data,master_add_H

jne clear_recv
incb receive_flag
1db CRCin,buf_data ; compute CRC for DNP header

call computeCRC
sjmp fin_write

cmpb receive_flag,#00000111b
jot Ccrc_recv

;> Check the lower byte of source address

émpb buf _data,master_add L

jne clear_recv
incb receive_flag
I1db CRCin,buf data ; compute CRC for DNP header

call computeCRC
sjmp fin_write

cmpb receive_flag,#00001000b
jot data_recv

;; Check the CRC

Idb CRCin,#00h
call computeCRC
call resul tCRC

;compare buf_data with CRCout
;jump to clear_recv if check fails
cmpb buf_data,CRCout

jne clear_recv
incb receive_flag
sjmp fin_write

cmpb receive_flag,#00001001b

jot dataCRC_recv

1db read_buffer,buf_data
incb receive_flag

sjmp fin_write

match CRC byte received with that computed on read_buffer

else jump to clear_recv

call initializeCRC

I1db CRCin,read_buffer
call computeCRC

1db CRCin,#00h

call computeCRC

call resultCRC

;compare buf_data with CRCout

if successful then process the request i.e. jump to check_io

Page 10 of 16

Assembly Code.asm

4/18/2006 2:06 PM

clear_recv:

;if comparision true => proceed else jump to check_io
cmpb buf_data,CRCout

jne clear_recv

1db buf_data,read_buffer
I1db receive_flag,#00h
sjmp check_io

:; One or more of the DNP checks failed => Data corrupted
;> Sender has to re-transmit => receive_flag set to 00h

1db receive_flag,#00h
sjmp fin_write ;exit RI interrupt handler

check_io:

write_req:

write_rms:

ser_loop:

transmit:

read_req:

;; To check for rms/avg value read or digital output

éndb read_rg,buf_data,#40h
jne read_req

;; Read values

Idb ah,#00h

andb read_rg,buf_data,#20h
je write_rms

1db ah,#08h

1d fx,rms_recent

andb al ,buf_data,#1fh
addb al ,ah

je transmit
inc x
inc x
decb al
sjmp ser_loop

;; Trnsmit the byte read to the base station

1db transmit_bufl, [fx]
inc x

1db transmit_buf2,[fx]
1db SBUF,synchronize

;; Start computing CRC for header

call initializeCRC
I1db CRCin,synchronize
call computeCRC

sjmp fin_write

;; Digital output

1db read_rg,#01h
andb fl,buf_data,#3fh
shlb read_rg, Tl

xorb portl,read_rg

Page 11 of 16

Assembly Code.asm 4/18/2006 2:06 PM

fin_write: ret

; Suroutine to handle Tl interrupt

ti_req: ;
;> This subroutine gets called when one byte-transmission completes

;; For each byte of DNP header sent we assign a flag number in send_flag
;; This flag number is used to distinguish a particular byte of DNP header to be sent

sync2_send: cmpb send_flag,#00000000b
jot length_send

;5 Send Synchronize byte 2

idb SBUF,synchronize

incb send_flag

1db CRCin,synchronize ; next byte to be computed CRC on
call computeCRC

sjmp fin_ti

length_send: cmpb send_flag,#00000001b
jot link_send

;> Send the number of data bytes which follow the header

Idb SBUF, #02h

I1db CRCin,#02h ; next byte to be computed CRC on
call computeCRC

incb send_flag

sjmp fin_ti

link_send: cmpb send_flag,#00000010b
jot destl_send

; Link control

Idb SBUF, ACK

1db CRCin,ACK ; next byte to be computed CRC on
call computeCRC

incb send_flag

sjmp fin_ti

destl_send: cmpb send_flag,#00000011b
jot dest2_send

Page 12 of 16

Assembly Code.asm

4/18/2006 2:06 PM

dest2_send:

srcl_send:

src2_send:

crc_send:

data_sendl:

;; Send upper byte of Destination

idb SBUF ,master_add_H

I1db CRCin,master_add_H ;
call computeCRC

incb send_flag

sjmp fin_ti

cmpb send_flag,#00000100b

jot srcl_send

;; Send lower byte of Destination

idb SBUF,master_add_L

1db CRCin,master_add_L ;
call computeCRC

incb send_flag

sjmp fin_ti

cmpb send_flag,#00000101b

jot src2_send

Idb SBUF,my_add_H

1db CRCin,my_add_H ;
call computeCRC

incb send_flag

sjmp fin_ti

cmpb send_flag,#00000110b

jot crc_send

address

next byte to be computed CRC on

address

next byte to be computed CRC on

Send upper byte of source address

next byte to be computed CRC on

;; Send lower byte of source address

Idb SBUF,my_add_L

1db CRCin,my_add_L ;
call computeCRC

incb send_flag

sjmp fin_ti

cmpb send_flag,#00000111b
jot data_sendl

;3 CRC check

1db CRCin,#00h

call computeCRC

call resultCRC

1db SBUF,CRCout

incb send_flag

sjmp fin_ti

cmpb send_flag,#00001000b
jot data_send2

1db SBUF, transmit_bufl

next byte to be computed CRC on

Page 13 of 16

Assembly Code.asm 4/18/2006 2:06 PM

incb send_flag
sjmp fin_ti

data_send2: cmpb send_flag,#00001001b
jot dataCRC_send
1db SBUF, transmit_buf2
incb send_flag

sjmp fin_ti

dataCRC_send: cmpb send_flag,#00001010b
jot fin_transmit

;; CRC check

call initializeCRC

1db CRCin,transmit_bufl
call computeCRC

I1db CRCin,transmit_buf2
call computeCRC

1db CRCin,#00h

call computeCRC

call resul tCRC

1db SBUF,CRCout

incb send_flag

sjmp fin_ti

fin_transmit: ;
;> Full packet transmitted
;> Next packet transmission should from 1st byte of DNP header => send_flag =

1db send_flag,#00h

fin_ti: ret

; Subroutines to compute 8 bit CRC (Cyclic Redundancy Check) of one byte
; @param CRCin - byte whose CRC has to be computed

; @return CRCout - one byte CRC
initializeCRC: 1Idb x0,#00h

1db x1,#00h

1db X2 ,#00h

1db x3,#00h

1db x4 ,#00h

1db x5,#00h

1db X6 ,#00h

1db X7 ,#00h

ret
computeCRC: 1db CRCloop,#08h
loopCRC: 1db tempIN,#00h

shlb CRCin,#01h
addcb templIN, tempIN

1db tempRegl,x7
xorb tempRegl,x1
1db tempReg2,Xx7

xorb tempReg2,x0

Page 14 of 16

Assembly Code.asm 4/18/2006 2:06 PM

1db tempReg3,x7
xorb tempReg3, tempIN
1db X7 ,%6
I1db X6 ,x5
I1db x5, x4
1db X4 ,%x3
1db X3,X%2
1db X2 ,tempRegl
1db x1,tempReg2
1db X0, tempReg3
decb CRCloop
jne loopCRC
ret

resul tCRC: shlb X7 ,#07h

shlb X6 ,#06h
shlb x5,#05h
shlb X4 ,#04h
shlb x3,#03h
shlb x2,#02h
shlb x1,#01h

1db CRCout,#00h
addb CRCout,x0
addb CRCout,x1
addb CRCout,x2
addb CRCout,x3
addb CRCout, x4
addb CRCout, x5
addb CRCout,x6
addb CRCout,x7

ret

This is a Sub routine to build a lookup table to compute square root

sqrt_table: 1d Tx,#7500h
1db al ,#00h
Id bx,#0000h
st bx, [X]
store: incb al
inc x
inc X
mulub bx,al,al
st bx, [x]
cmpb al ,#0ffh
je done
sjmp store
done: ret

This sub routine is for displaying a word to the terminal

Page 15 of 16

Assembly Code.asm

4/18/2006 2:06 PM

disp:

end

Id

Id

1d
1db
Icall
1d

Id
ret

disp_data_temp,ax
disp_data_tmpl, fx
ax,disp_data

el ,#06h
serial_lib
x,disp_data_tmpl
ax,disp_data_temp

Page 16 of 16

Appendix B: LabVIEW 7.1 Codes
(Written with a PC)

Page 1

sem2_1.vi

D:\personal\courses\BTP\Sem?2 Codes\sem2_1.vi
Last modified on 4/4/2006 at 1:09 PM

Printed on 4/16/2006 at 11:12 PM

RMS Voltage

A 5 0000000000000 00000000000000000000 String Read

P

Input Line

Waveform Chart

[z o ok Eb
o =1
Waveform Chart
F—TH
History

]o|RMS Voltage | [RMS Current 4 '
] 7 W True —P
! Visible ! Visible

Power Factor|Average Power
EE] FE]
I Visible ! Visible

T Wavefol
! Visible

[Tab Control 2

i Select Line

9 False]L

d True :h g

RMS Voltage | [RMS Current
- W

b visible P visible

d False :h
Power Factor|Average Power
- -
! Visible ! Visible

Waveform Chartg
(7w |

b visible b visible
{z>

DNP_in_2.vi

D:\personal\courses\BTP\Sem2 Codes\DNP_in_2.vi
Last modified on 4/4/2006 at 11:50 AM

Printed on 4/16/2006 at 11:09 PM

read buffer

=

Synchronize

Synchronize

h i)
wi O @
Link Control - o puanl
wt O
Destination U =t O P 01111110

wt O —@
o—e
o e
=

11111111

—
[©]
>
«Q
—

Source L

[4]
Destination L Elji E;
Source U
8]

(@)
)
@)

11111111

00000000

ol il

oooooooon
b ddidd

[1z=

Page 1

Page 1

DNP_out_2.vi 1
D:\personal\courses\BTP\Sem2 Codes\DNP_out_2.vi

Last modified on 4/4/2006 at 1:09 PM
Printed on 4/16/2006 at 11:07 PM

duplicate VISA resource name 2

VISH
01111110 170 duplicate VISA resource name
01111110 E“ISHE'
O+ EE I/
Length 00000001 0-+1 1
10101010 L |
O--+| &1
00000000 - o=
o+
Destination L] {00000001 - =
error out
Source U 11111111 |— = ‘
[mE s - o
Source L 11111111 E+ [
EX+ T
=
B+
21+
2+ !i
i

CRC 1.vi

D:\personal\courses\BTPA\Sem2 Codes\CRC_1.vi
Last modified on 4/4/2006 at 1:14 PM

Printed on 4/16/2006 at 11:10 PM

Bt

string

Umz

0000000
oooooooon

IRREEEEE:
O

Oooooooog

oooooooo

PN I O W W)

.]_[-u]#]_l O+ 3 l—@

ﬂ
b

Page 1

