

B. Tech Project Report

Microcontroller Based

Power Distribution

Monitoring & Control

Project Guide: Dr S. P. Das

Submitted By -

Alekh Jindal (Y2038)
Yash Agarwal (Y2436)

 2

Acknowledgements

We would like to express our sincere gratitude to Dr S. P. Das, Associate Professor,
Department of Electrical Engineering, IIT Kanpur, for his continuous encouragement
and support. During the topic finalizing period he helped us fix a target and then it
was real fun chasing it. Dr Das initiated us with a very simple approach and thereon
building the complexity as the project moved on. We are grateful to him for giving us
such a wonderful learning experience.

We are also highly grateful to Mr. Kapil Deo, In-charge, Microprocessor Lab, for his
support and cooperation over strenuous long hours. It was due to his urge and
motivation that we were able to realize this project.

We are also thankful to Mr. J Phani Kumar, M. Tech Student, and to Mr. Ranjan
Kumar Behara, PhD Student, for their useful help and support.

 3

Contents

1. Introduction
1.1 Motivation
1.2 Project Idea
1.3 Reinventing the wheel
1.4 Project Implementation
1.5 Organization of the Report

2. Overall Project Design

3. Remote Terminal Unit
3.1 Real Time Sampling
3.2 Computations
3.3 Digital output
3.4 Communication Handler

4. Base Station

5. Distributed Network Protocol(DNP) 3.0
5.1 Introduction
5.2 Design
5.3 Implementation
5.4 Layering

6. Schematics of Wireless Communication

7. Cyclic Redundancy Check(CRC)
7.1 Objective
7.2 Algorithm
7.3 Hardware Implementation
7.4 Software Implementation

8. Experimental Results and Discussions
8.1 Performance
8.2 Source of Error
8.3 Snapshots of work

9. Conclusion

10. References

Appendix A Assembly Codes
Appendix B LabVIEW Codes

 4

Abstract

This project aims to automate the process of obtaining data relating to power
distribution such as from a substation or transformer and to control a circuit breaker, a
motor, or a valve. The system consists of a Base Station and a Remote Terminal Unit
(RTU). Base Station is a Desktop PC running a graphical user interface (GUI)
generated in labVIEW. RTU is 80196KC microcontroller-based Terminal which is
located at a remote substation / transformer. The RTU being compact can even be
installed on the pole top of a transformer. It measures the voltages and currents of
input lines, and calculates RMS values of voltages and currents along with average
power of the line. The Base Station and the RTU communicate via serial link through
RS-232 ports. The physical medium can be wired or wireless using BiM-418-F
transceiver chips.

The GUI at Base Station allows user to monitor RMS voltage, current and average
power of any line. Monitoring can be instantaneous or in continuous mode. Thereafter
energy audit and other forms of analysis can be carried out at the base station, where
data from all the different substations will be available. In addition to this, there is
also some control capability at the base station. The operator can operate on digital
lines i.e. switch on or switch off any breaker connected to the RTU.

To ensure validity of exchanged data and standardization in the process, distributed
network protocol (DNP 3.0). It helps in overcoming noise and signal distortion. DNP3
software is layered to provide reliable data transmission. Layering also helps to
organize the transmission of data and commands. The three layers in DNP3 protocol
are: application layer, data link layer and physical layer. The project implements
Multi-drop DNP3 architecture whereby one master communication device (Base
Station) is connected to several slave communication devices (RTUs). To ensure
reliability, error detection algorithm cyclic redundancy check (CRC) is used. It is used
along with DNP 3.0 protocol. CRC algorithms are designed to maximize the
probability of error detection. The probability that a message contains errors and the
CRC stills checks out is very low.

Key words: Intel 80196 microcontroller, LabVIEW 7.1, Power Distribution System,
Remote Terminal Unit, DNP 3.0 protocol, Base Station

 5

1. Introduction

1.1 Motivation

The motivation for this project comes from the need for an efficient system of energy
management. Efficient power distribution requires interactive monitoring and control
of the distribution/transmission network. Moreover in India, a substantial portion of
energy is drained by unauthorized power consumption, thereby requiring further
attention. In order to cope up with increasing demand of reliable and quality power,
there is a need for automated maintenance with provisions for dealing with cases of
failure.

1.2 Project Idea

This project aims to provide an automated system whereby energy flow can be closely
monitored and controlled remotely. The plan is to come up with an integrated
microcontroller based wireless remote terminal unit. The terminal unit would be
operating in the actual field setting and would be concerned with monitoring and
control of the distribution network. This necessitates the terminal unit to be integrated
and robust. The terminal unit would be operated from the base station via user
friendly software tools. This provides the facility of post processing and analysis
centrally and in a more rigorous manner. This will enable the detection of distribution
bottle necks and will also account for the high losses that are being incurred.

A two way wireless communication link would be used to communicate between the
terminal unit and the base station. Base station links together several terminal units
and hence acts as a central server for the different power distribution links. The
central nature of the base station is specifically useful since network wide view of the
power distribution can be visualized. This can help in taking actions on a part of
network due to events occurring on some other part of the network.

1.3 Reinventing the Wheel

A similar solution has been previously proposed but it differs from this project in the
following sense –

1. This project focuses on an integrated remote terminal unit (RTU). A 16 bit
microcontroller instead of a PC based setup can suffice the purpose of RTU
controller.

2. The RTU is expected to be typically 1/4th the size of the existing solution.
3. Given its robustness, this RTU can be installed at pole tops or at locations

remote in real sense.
4. Wireless communication link is being established which uses distributed

network protocol (DNP 3.0).

 6

5. A centralized base station (for all RTUs) with user friendly graphical user
interface (GUI) is being provided to the end user.

6. It is a low cost solution.

1.4 Project Implementation

Remote Terminal Units (RTUs) will be mounted on all transformers distribution
network. These RTUs would have the capability to measure line currents and line
voltages (through the use of Current Transformers and Potential transformers). They
would then transmit this data, on a periodic basis, to a central base station, which
would be located in the substation. Each distribution transformer would have
complete accountability for the power that it is extracting from the grid. Similarly,
every substation would have complete information about power flow in its part of the
grid.

 Fig 1.1 - Project Schematic

BASE

STATION

RTU
BUS

RTU
BUS

RTU
BUS

RTU
BUS

RTU
BUS

 7

1.5 Organization of the Report

Following this brief introduction about project idea, motivation and implementation
we have the subsequent report organized as follows.

Overall Project Design: It elaborates the project design and the main components of
the system.

Remote Terminal Unit : This section discusses how the various functions (like real
time sampling, A/D conversion and so on) at the RTU have been implemented using
the Intel 80196 microcontroller.

Base Station: The Graphical User Interface (GUI) that has been developed using
LabVIEW is explained here.

Distributed Network Protocol (DNP) 3.0: This protocol is being implemented in
this semester and here it is explained in detail. Along with the design, the
implementation of DNP in the project is discussed. Lastly the three layers of the
protocol are explained along with discussion on cross-layer communication.

Wireless Communication: This proposes a schematic for wireless communication in
place of wired one. The worked out details and issues of setting up wireless
communication are put forth.

Cyclic Redundancy Check (CRC): Here an error detecting algorithm which has
been used to ensure reliable communication is discussed. Also, hardware and software
implementation are of this algorithm are shown.

Experimental Results and Discussions: The hardware setup along with performance
analysis is shown. The measurement and computation results are also compared with
the calculated ones. Also, snap shots of the work with discussion is presented.

Conclusion: Presents summary of the work and suggests some scope for future work.

Appendix A contains the assembly codes written for 80196KC microcontroller.
Appendix B contains the labVIEW codes written for the Base Station.

 8

2. Overall Project Design

The system has three major components –

1. Remote Terminal Unit: It is equipped with the tasks of real time sampling of
current and voltage signals, computation of root mean square values of current and
voltage along with average power, digital output for line or breaker control and
handler for communication with the base station.

2. Communication Setup: Communication is done over wireless medium using
distributed network protocol (DNP). Both the RTU and the base station use a
transceiver module for this purpose. A two way communication link provides the
interactivity between the two end points.

3. Base Station: This is aimed at monitoring and controlling the RTU remotely.
Apart from the communication handler, base station has a user friendly graphical
interface. It allows user to monitor instantaneous as well prolonged responses from
one or more RTUs.

Fig 2.1 - Block Diagram of the design

Real Time
Sampling

Digital Output

Communication
Interface

Communication
Interface

Computation

Graphical User

Interface

Output

Input

Base Station

DNP 3.0

Communication
Channel

Remote Terminal Unit

 9

3. Remote Terminal Unit

3.1 Real Time Sampling:

High Speed Output unit (HSO)

The HSO triggers events at specific times with minimal CPU overhead. Events are
generated by writing commands to the HSO_COMMAND register and the relative
time at which the events are to occur into the HSO_TIME register.

LDB HSO_COMMAND, #what _to_do
LDB HSO_TIME, #when_to_do_it

Events can be based on Timer1 or Timer2, such that whenever HSO_TIME matches
the timer value the event loaded into HSO_COMMAND is triggered. Up to 8 events
can be loaded into the HSO control at one point of time. More ever, normally the
events are cleared from the HSO control once the events are triggered. We have to
lock them into the HSO control such that they occur repeatedly until stopped.

Timing Considerations

This sampler samples 16 samples per sample for 4 cycles and then computes the rms
and average values.

 Assuming input frequency to be 50 Hz,
 Time between two successive samples = (1/50) * (1/16) sec
 = 1.25 ms

Internal operation is based on the oscillator frequency divided by two, giving the basic
time unit known as ‘state time’. Given 12 MHz crystal on the kit –

 State time = (2/12) us = 166.66 ns

Now, since up to 8 events can be loaded into the HSO control, it takes the HSO
control 8 state times to compare all HSO_TIMEs with the timer value. In order to
avoid missing any of the events, it is desirable to make the timer increment every 8
state times.

 Therefore, time between two successive timer counts = 8*166.66ns
 = 1.33 us
Hence, number of timer counts required between two successive samples = 1.25
ms/1.33us = 937.5

 ~ 938
Note: Analog to Digital converter taker 158 state times for full conversion i.e. (158/8
~ 20) timer counts occur while the digital conversion is in process. Hence the
converter is ready by the time the timer reaches 938 the next time.

 10

Thus, based on this we need to feed the following two events into the HSO control –

a) Start A/D sampling after 938 timer counts
b) Reset timer on 939th count

This sampler uses Timer2 for HSO timing. IOC2 sets Timer2 to count every 8 state
times and to count up. IOC0 resets Timer2. T2CNTC sets to clock Timer2 internally.

A/D converter

AD_COMMAND is used feed the Analog to Digital converter. It is set to give 8 bit
digital output. The converter may be instructed to start sampling immediately or when
it is triggered by the HSO. This sampler uses A/D converter in the latter mode.
However if more than one A/D conversions are to be made then the converter needs
feeding repeatedly through AD_COMMAND. A/D conversion complete interrupt is
enabled using INT_MASK. The address of the Interrupt Service Sub-routine (ISR) is
stored at 6002h which is where the processor looks for the A/D complete ISR address.
A/D result is read from AD_RESULT register. Currently it samples 64 samples each
from 8 input channels in a cyclic fashion.

Summary of registers used by the real time sampler is given below –

HSO_COMMAND Load events into High Speed Output unit

HSO_TIME Load the triggering time corresponding to the respective event

IOC0.0 Reset Timer2

IOC2.0 Timer2 counts every 8 state times

IOC2.1 Count up

IOC2.6 Enable locking of HSO commands

T2CNTC Clock Timer2 internally

AD_COMMAND Activate A/D converter

AD_RESULT A/D result

INT_MASK To enable the A/D conversion complete interrupt

 11

 Fig 3.1: Real Time Sampling Flow Chart

NO Timer 2
= 939 ?

HSO
control

cleared ?

Timer Settings
1. Reset Timer2
2. Count every 8 state times
3. Clock Timer 2 internally

ADC Settings
1. Store ADC complete interrupt sub-routine address at 6002h
2. Enable A/D conversion complete interrupt

Load event 1 in HSO
1. HSO_COMMAND = Reset Timer 2 using Timer 2
2. HSO_TIME = 939
3. Lock this event in HSO control

Load event 2 in HSO
1. HSO_COMMAND = Start A/D conversion using Timer 2
2. HSO_TIME = 938
3. Lock this event in HSO control

Start A/D by HSO

Read & Store
ADC result

No of
Samples
= 64 ?

No of
Channels

Sampled = 8 ?

YES

YES

NO

NO

Start A/D by HSO

Timer 2
= 938 ?

Reset Timer 2

Proceed to Calculations

Start A/D
by HSO

Clear HSO control

YES

YES

NO

 12

3.2 Computations:

Root Mean Square

Each of the analog channel needs to computed for its root mean square (rms) values
because –

a) It is easier to deal with rms values rather than with individual samples.
b) Since the processing speed of the microcontroller is much faster when

compared to the transfer rates of the communication interface, this increases
the overall efficiency.

c) Transmitting the large number of samples to the base station creates lot of
traffic in the communication medium.

d) Burdening the base station with processing overhead is not a nice idea.

The equations used to calculate the above are given below –

n

i
irms

n

i
irms

I
n

I

V
n

V

=

=

∑

∑
−

=

−

=

1

1

2

1

1

2

1

1

The multiplication, addition and squaring operations can be easily carried, as these are
part of the instruction set of 80196. The divide operation is also trivial as the division
is only by 64. It is achieved by shifting the bits to the right six times. The operation
of interest is the square root function as this is not a standard function in the 80196
instruction set.

A look up table containing squares of all integers from 0 to 255 has been stored in
memory. First the number is compared with all the squares to determine the interval
between which it lies. A linear approximation is made to calculate the square root of
the number. Let x be the number whose square root needs to be calculated and it falls
between x1 and x2 (y1 and y2 are their respective square root). Then the square root
of x by this method will be

12
11
xx

xxyy
−
−

+=

The error involved is within a few percent for the numbers concerned. Since we are
just calculating up to 2decimal places, the use of this method is justified. Let us take
an example of 110.

Actual Square root = 10.49
Square root by this method = 10.48

The following graph shows the differences between the actual and approximated
values of square roots. Note that the approximation is more erroneous for the lower
end of the number line, where the difference is the most.

 13

 Fig 3.2: Comparison actual and approximated square root function

Average Power

The real time sampler assumes input signals to be alternately voltage and current
signals as follows –

 Fig 3.3: Analog Input Arrangement

With this assumption we calculate the average power and power factor as follows –

rmsrms

avg

i

n

i
iavg

IV
P

PF

IVP

=

= ∑
−

=

1

1

3.3 Digital Output:

In addition to sampling and carrying out calculations, there is also a feature for remote
control. The idea here is to completely eliminate the need of an operator at the

Analog Input

V V V VI I I I

 14

transformer or breaker. All the readings / operations should be possible from remote
locations.

There are currently eight output channels (single bit). These can be used to operate
eight feeders. A high on the bit line would switch on the breaker and a low on the bit
line would switch off the breaker.

3.4 Communication Handler:

The RTU communicates with the base station via serial communication port.
Currently the communication is wired. Communication is two way and involves the
following exchanges of messages –

 Fig 3.4: Interaction between Base Station and RTU

The frame format used for the requests is as follows

Bit 0 – Not used
Bit 1 - Defines whether it is a write or read operation. 1 – Write, 0 – Read
Bit 2 – For read it defines whether the read is Pavg or Vrms / Irms
 For write it is not used
Bit 3 - Bit 7 – specify the channel

 Fig 3.5: Frame Format of exchange message

Request for RMS value

Request for Average value

Digital Output

Send RMS Value

Send Average Value

Base

Station RTU

 15

The microcontroller kit SBC – 196 comes with an in-built serial port. The procedure
is as follows:

• An incoming request from the base station through the serial port and triggers
the serial port interrupt.

• In the interrupt service routine, the incoming is request is analyzed and the
required data is transmitted through the serial port

• After the interrupt has been serviced, the microcontroller returns to the start of
the sampling routine and not to its position before the interrupt. This is
essential to maintain proper timing for the sampling routines and to avoid any
discontinuity in the samples.

Settings

Serial port is set to operate in asynchronous mode 3. Baud rate is set to 2400. The
registers affected are –

BAUD_RATE Selects serial port baud rate and clock source

SP_CON This register selects the communication mode and enables or
disables the receiver, even parity checking.

IOC1.5 Enables the TXD function of P2.0

INT_MASK Enables serial port interrupt

Value fed to BAUD_RATE is computed as –

For baud rate of 2400, BAUD_VALUE comes out to be 312.5 (139h). To select
internal clock bit 15 of BAUD_RATE is 1. Hence the value fed to BAUD_RATE is
8139h.

 Fig 3.6: Frame Format for communication

For transmission of data from the microcontroller to the base station the format is
simple. Pavg, Vrms and Irms are all 2 byte responses. For RMS values the first byte
represents the number and the second byte represents the decimal. They are
transmitted as “byte.byte”. For average values the entire word represents a value.

 16

 Fig 3.7: Flow Chart of serial communication handler at the RTU

Main Program

Go to Interrupt Service Routine

Analyze Request

Read /
Write

Request

Request for
RMS /Avg

Value

Write to output port

Read RMS value and
write to serial Port

Read avg. value and
write to serial port

Restart Sampling
form the Beginning

WRITE READ

RMS Avg

1. Set Baud Rate
2. Set the serial in mode 3 using internal clock.
3. Enable the TXD function of P2.0
4. Store the address of serial interrupt sub-routine at 600ch
5. Enable the serial interrupt.

Serial
Interrupt

Yes

No

 17

4. Base Station

Labview, a software package from National Instruments, has been used for
programming the base station. Essentially, Virtual Instrumentation Software
Architecture (VISA) library is being used to communicate with the serial port.
Currently a wire runs from Computer serial port to RTU serial port.

Base station sends requests for the following three operations –

1. To read RMS values of voltage and current.
2. To read average value of power.
3. To write the digital output.

The frame format used for the requests is as follows -

Bit 0 – Not used
Bit 1 - Defines whether it is a write or read operation. 1 – Write, 0 – Read
Bit 2 – For read it defines whether the read is Pavg or Vrms / Irms
 For write it is not used
Bit 3 - Bit 7 – specify the channel

 Fig 4.1: Frame Format of exchange message

Currently the frame format supports 32 Inputs / Outputs. Based on the three
operations the graphical user interface provides the following three modes –

1. Update the values of Vrms, Irms, Pavg and power factor of a line.
2. Monitor Vrms, Irms, Pavg and power factor of a line in a continuous fashion.
3. Send digital output to a line.

A line here refers to two inputs (voltage and current) and one output.

After sending request for reading RMS or average values, the GUI waits for the RTU
to respond. RTU responds with two bytes which are interpreted by the GUI as follows

a) If the reply is for RMS request, then the first byte is interpreted as the decimal
part and second byte as integral part i.e. “byte1.byte2”

b) If the reply is for average value request, then the first byte is interpreted as the
lower byte of the number and the second byte as the upper byte i.e. “byte
byte”

The byte value received at base station serial port is converted into 2 hexadecimal
characters. The ASCII character represented by this byte is read by Labview. Using
the various subroutines in Labview this is then converted into a meaningful decimal
value. In continuous mode the program continually sends requests and obtains fresh
data every 3 seconds.

 18

 Fig 4.2: Graphical User Interface (GUI) flow chart

Update ?

Digital
Output ?

Continuous
?

Stop ?

Start

Send Data Request

Read Data

Display Data Send Data

Exit

Yes

Yes

Yes

Yes

No

No

No

No

Wait 3 seconds

 19

5. Distributed Network Protocol (DNP) 3.0

5.1 Introduction

Protocols define the rules by which devices talk with each other. DNP 3.0 is a
protocol for transmission of data from point A to point B using serial and IP
communications. It provides rules for substation computer and remote terminal unit
(RTU) to communicate data and control commands. Data communication may
involve transfer of analog input data that conveys voltages, current and power.
Control commands may be to close or trip a circuit breaker, start or stop a motor, and
open or close a valve. DNP3 is intended for Supervisory Control and Data Acquisition
(SCADA) applications. Some of the features of DNP are –

1. Secure configuration/file transfers
2. Addressing for over 65,000 devices on a single link
3. Time synchronization
4. Broadcast messages
5. Data link and application layer confirmation

5.2 Design

Communication circuits between the devices are often imperfect. They are susceptible
to noise and signal distortion. DNP3 software is layered to provide reliable data
transmission. Layering also helps to organize the transmission of data and commands.
DNP3 was originally designed based on three layer of the OSI seven-layer model:
application layer, data link layer and physical layer. The physical layer defines most
commonly a simple RS-232 or RS-485 interface.

 Fig 5.1 - Three layer model of DNP 3.0

Few typical system architectures where DNP3 is used are –

1. One-on-One
2. Multi-drop
3. Hierarchical

Application
Layer

Link Layer

Physical Layer

Application
Layer

Link Layer

Physical Layer

Physical Media

 20

5.3 Implementation

Multi-drop system architecture is being used for the purpose of this project. Here one
master station (called substation) communicates with multiple outstation devices
(called RTU). It was implemented as follows –

 Fig 5.2 – Multi-drop DNP3 system architecture

5.4 Layering

Data communication was layered into the DNP protocol as follows –

 Fig 5.3 – Communication layers and data flow

DNP3
Master

DNP3
Outstation

DNP3
Outstation

DNP3
Outstation

User Code

DNP3

Link Layer

User Code

DNP3

Link Layer

Measured
Data

Measured
Data

Control
Signals

Control
Signals

User Request

Response
BASE STATION RTU

RS-232 RS-232

 21

Data exchanged:

1) Measured Data - is gathered by remote terminal unit (RTU) and sent over to
the base station. These include RMS voltage, RMS current and average power.

2) Control Signals - are issued by base station to RTU. These include digital logic
bits at the RTU end.

 5.4.1 User Code Layer

User code layer processes the measured data and the control signals. User code at
base station creates user interface and creates request to be sent over to the RTU. User
code at RTU processes the user request and responds to it.

 5.4.2 DNP3 Link Layer

Link layer receives data from User Code Layer and has the responsibility of making
the physical link reliable. It does this by providing framing of data, error detection and
duplicate frame detection. Link layer sends and receives packets which are called
frames. DNP3 frame consists of a header and data section as follows –

The header specifies the frame size, contains data link control information and
identifies the DNP3 source and destination device addresses. The data section is
commonly called the ‘payload’ and contains data (measured data or control signals)
passed down from the layers above i.e. the User code layer. The header was
implemented as follows –

 Sync – It constitutes two ‘synchronize’ bytes that help the receiver identify
where the frame begins. The byte we have used is 01111110.

 Length – It is one byte parameter which specifies the number of bytes of
data excluding CRC bytes, attached along with the frame.

 Link Control – It consists of a single byte which is used by the sending and
receiving link layers to coordinate their activities. In this implementation
receiver while responding back sends an acknowledgement byte
(10101010) in the link control parameter.

 Destination Address – It specifies the DNP3 device for which this frame of
data is intended. Only this particular DNP3 device is supposed to process

Header Data

DNP3 Frame

Sync Length Link
Control

Destination
Address

Source
Address

CRC

Header

 22

the data. It is a two byte address which implies there could be 65536
possible addresses. 12 addresses are reserved and hence 65520 individual
addresses are available.

 Source Address – It specifies which DNP3 device sent the message. It is
again two bytes long. This enables the receiver to know where to direct its
response.

 CRC – It stands for Cyclic Redundancy Check and is used for detecting
communication errors in the header. This implementation uses one byte
CRC for DNP3 frame header.

The data part of the DNP3 frame contains CRC checks for every 16 bytes of data.
However the last remaining chunk of data which may be less than 16 bytes also has
CRC. Maximum data payload in one frame is 250 bytes excluding the CRC checks.
Following is how a data frame is organized.

In this implementation the base station has been assigned the address FF H and RTU
has been assigned the address 01 H. With this a request sent from base station to the
RTU looks like –

Sync Length Link
Control

Destination
Address

Source
Address CRC Data CRC

2 Byte 1 Byte 1 Byte 2 Bytes 2 Bytes 1 Byte 1 Byte 1 Byte

01111110
01111110 00000001 11111111 00000000

00000001
11111111
11111111 00111001 Data/Control CRC

If the request sent by the base station is ‘data request’ then the RTU responds back as
follows -

Sync Length Link
Control

Destination
Address

Source
Address CRC Data CRC

2 Byte 1 Byte 1 Byte 2 Bytes 2 Bytes 1 Byte 2 Bytes 1 Byte

01111110
01111110 00000010 10101010 11111111

11111111
00000000
00000001 11100111 Data value CRC

Data (16 bytes) CRC Data (16 bytes) CRC Data CRC

Data

 23

 5.4.3 Physical Layer (RS-232)

It receives the frame from the Link Layer and the encoding and modulation of data.
RS-232 serial communication is used as the physical layer.

Encoding: RS-232 uses Non-Return to zero (NRZ) encoding. In NRZ encoding
logical ‘0’ is represented by one line state and logical ‘1’ by another. Data
transmission starts with a START bit which is logical ‘0’ and ends with a STOP bit
which is logical ‘1’.

 Fig 5.4 – Data transmission in RS-232

RS-232 inverts the signals and so logical ‘0’ is +10V while logical ‘1’ is -10V. The
driver and receiver logic level is shown below.

 Fig 5.5 – RS-232 driver and receiver logic level

Physical Medium: The implementation uses wired medium for communication. For
wireless communication BiM-418-F transceiver chips can be used. It provides low
cost solution to implement a bi-directional short range radio data links.

START DATA STOP

Logic ‘0’

Logic ‘1’

Logic ‘0’

Logic ‘1’

-15 V

-5 V

 5 V

-15 V

 15 V

 3 V

-3 V

Rs-232 Driver Rs-232 Receiver

 15 V

 24

6. Schematics of Wireless Communication

Wireless communication capability is provided by BiM-418-F transceiver chips.
Salient features of this transceiver chip are –

 30 meter range without buildings
 Single 4.5-5.5 supply
 Half duplex at up to 40 KBits/s
 418 MHz

The transceiver being half duplex, it can transmit and receive one at a time. Thus we
need an additional bit to set the communication mode (receive/transmit) of the
transceiver both at the base station and the RTU. Two pins TX Select and RX Select
are provided in the transceiver for this purpose. They can be configured as followed –

TX Select RX Select Operation
1 1 Power Down
1 0 Receiver Enabled
0 1 Transmitter Enabled
0 0 Self-test Loop

The communication setup between the base station and RTU is shown below -

 Fig 6.1 – Wireless communication setup

BiM-418-F

TX Select RX Select

TXD

Antenna

BiM-418-F

TX Select RX Select

TXD

RXD

Antenna

BASE STATION

RTU

BiM-418-F

TX Select RX Select

RXD

Antenna

0 1

1 0

Transmitter

Receiver

1/0 0/1

 25

The RTU has one transceiver for reception followed by transmission of data. Whereas
the base station has one transceiver dedicated for transmission and another dedicated
for reception. This makes communication at base station to be full duplex. Thus, the
communication setup allows the base station to issue requests to some RTU while
receiving data from some other RTU at the same time. The RTU however doesn’t
need to be full duplex as it just responds to the user requests from the base station.

The TXD pin of the transceiver operates in the range 0-5V whereas the RS-232 driver
encodes data into +10V / -10V signals. Thus +10V/-10V signal from the RS-232 port
needs to be converted to 0V/+5V (since logical ‘0’ is +10V in RS-232). The following
circuitry was designed for this purpose.

 Fig 6.2 - Circuit Schematic to feed RS-232 output to Transceiver TXD pins

Similarly the RXD pin of the transceiver produces digital output 0/5 V. Before
feeding this signal to RS-232, we need to convert it to +10V/-10V logic. The
following figure shows how this is done.

 26

 Fig 6.3 - Circuit Schematic to feed Transceiver RXD output to RS-232

Working: Following flow chart illustrates how the transceiver communication operates

Fig 6.4 – Flowchart for wireless communication between Base Station and RTU

GUI

Transmit Request

Set Transceiver in
Receive mode

Receive Request

User
Request

Data
Request

Set Transceiver in
Transmit mode

Transmit Response Receive Response

Yes Yes

No No

Base Station RTU

 27

7. Cyclic Redundancy Check

7.1 Objective of CRC
Cyclic redundancy check or CRC is an error detection algorithm. It is used in the
DNP 3.0 protocol. CRC algorithms are designed to maximize the probability of error
detection. The probability that a message contains errors and the CRC stills checks
out is very low. This procedure ensures the validity of the data received.

An (n+1) bit message is represented by a polynomial of degree n. Then using CRC
algorithm k bits are computed from the (n+1) bit message. The additional k bits are
sent over to the receiver which then again computes these k bits using the same
algorithm. If the k bits computed matches with the k bits received by the receiver then
there is no error, else error is considered to be detected.

7.2 Algorithm
Given a message polynomial M(x) of degree n, we select a divisor polynomial C(x) of
degree k. Then our goal is to find a polynomial P(x) of degree (n + k) such that P(x) is
exactly divisible by C(x). This is done as follows –

• Multiply M(x) with xk to obtain T(x)
• Divide T(x) by C(x), obtain remainder as R(x)
• P(x) = T(x) – R(x)

Different divisor polynomials are available.

Example: Message – 11100101, Divisor – 1)(45 +++= xxxxC , 1101 which is
equivalent to 1101. Firstly, four zeros are appended at the end of the message. The
resulting bit pattern is then divided by 1101. The remainder obtained is the CRC of
the message. It is appended to the original message (without the zeros).

 Fig 7.1 – Obtaining CRC for a ‘Message’ using a ‘Generator Polynomial’

 28

7.3 Hardware Implementation
In practical applications, CRC is implemented by the use of registers as shown in the
figure below. For hardware implementation, shift registers are used while memory
allocation suffices for software implementation. The message bits are fed one by one
starting with the most significant bit. After all the message bits have been fed, the
resulting state of the registers gives the CRC of the message. The same
implementation is used for verification of CRC at the receiver end. The incoming
message is fed to the setup bit by bit. After the last bit is fed, the registers should all
be 0.

 Fig 7.2 - Schematic for hardware implementation of CRC

 Table 7.1

S. No. X0 X1 X2 X3 Message Bit

1 0 0 0 0 1
2 1 0 0 0 1
3 1 1 0 0 1
4 1 1 1 0 0
5 0 1 1 1 0
6 1 1 1 0 1
7 1 1 1 1 0
8 1 0 1 0 1
9 1 1 0 1 0
10 1 0 1 1 0
11 1 0 0 0 0
12 0 1 0 0 0

CRC 0 0 1 0

As seen from the table the CRC is obtained is 0100 (X3 – X0) which matches the
value obtained from long division.

Message

X0

X1

X2

X3

 29

7.4 Software Implementation
Here instead of shift registers memory variables are used. Using the same example we
compute the CRC as follows.

 Fig 7.3 – Flowchart for software implementation of 4-bit CRC

The base station and the RTU implement 8–bit CRC using the polynomial

1)(28 +++= xxxxC . The above methodology is extended for 8-bit as well.

Message

Shift out the MSB

Temp1, Temp2, Temp3,
x3, x2, x1, x0 = 0

Temp1 = x3 XOR MSB

Temp2 = x3 XOR x0

Temp3 = x3 XOR x2

x3 = Temp3

x2 = x1

x1 = Temp2

x0 = Temp1

Message = 0

CRC = x3 x2 x1 x0

Yes

No

 30

8. Experimental Results and Discussions

This chapter gives details of the experimental setup and results obtained. The hardware
schematic is shown in figure 8.1. The PC implements the graphical user interface (GUI)
whereas the Intel 80196 microcontroller is mainly used for RTU computation.

 Fig 8.1 – Hardware schematic

8.1 Performance

To analyze system performance a signal S = (2.5 + 2.5*sinwt) was fed to channel 1
and 2 both. Offset was given so as to ensure that the input is in the range of 0-5 Volts.
Observed values were –

 Vrms = 3.03 Volt
 Irms = 3.03 Volt

Average Power = 9.19 Watts
 Power Factor = 0.9978

Theoretical values can computed as follows -

Input, V = 2.5 + 2.5*sinwt
 I = 2.5 + 2.5*sinwt

Expected values of Vrms and Irms are –

 2п
 Vrms = √ { (1/2п) * ∫ (2.5 + 2.5*sinwt)2 dwt }
 0

GUI

RS-232

 RS-232

v1 i1 v2 i2 v3 i3 v4 i4

D0 D1 D2 D3 D4 D5 D6 D7

Analog Inputs

Digital Output

Desktop PC (Base Station)

80196KC kit (RTU)

Serial

Communication

 31

 2п
 = √ {(1/2п) * ∫ (6.25 + 6.25*sin2wt + 13.5*sinwt) dwt }
 0

 = √ {6.25 + 6.25/2)

 = 3.06 Volt

 2п
Value of Average Power = (1/2п) * ∫ (2.5 + 2.5*sinwt)2 dwt }
 0

 2п
 = (1/2п) * ∫ (6.25 + 6.25*sin2wt + 13.5*sinwt) dwt }
 0

 = {6.25 + 6.25/2)

 = 9.375 Volt

 Irms = Vrms
 Power Factor = 1 (Since the V and I are just the same signal)

Error in observed values (for Vrms / Irms) = (3.06-3.03)*100/3.06 = 0.98 %

Error in observed values (for Average Power) = (9.375-9.19)*100/9.375 = 1.97 %

8.2 Sources of Error

1. Quantization: Observed values are based on 16 samples per cycle while the
expected values are based on continuous spectrum. Improving sampling
resolution will add more insensitivity to error.

2. Square root: Linear interpolation is applied while computing the square root.

This approximation is negligibly erroneous only for very high numbers.

3. Frequency mismatch: The real time sampler assumes the input frequency to be
50 Hz but in reality there are always deviations from 50 Hz. Frequency
variations will cause more or less than 16 samples to be taken in one cycle,
thereby affecting RMS values drastically.

 32

8.3 Screen Captures of the Graphical User Interface

Shown below is the Graphical User Interface for the digital output operation. The
“Operate Line” command simply toggles the state of the selected line. That is if the
line is on, it is switched off and vice versa

Fig 8.2 – Digital output control at Base Station

The base station can operate in two modes for data acquisition i.e. the continuous
update mode and the discrete update mode. Shown below is the continuous update
mode. The four plots represent RMS voltage, RMS current, average power and power
factor for line 1. (All the voltages and currents have to be scaled down to 0-5V
through a signal conditioning module, before they can be fed to the RTU). The string
read gives the hexadecimal equivalent of the bit stream read by the base station. This
contains 9 bytes of header, 2 bytes of data and 1 byte of CRC for the data.

 33

 Fig 8.3 - Continuous Update mode

Shown below is the discrete update mode at the Base Station. Data is only acquired
upon clicking the update button. The four dials show the values of RMS voltage,
RMS current, average power and power factor. The string read again gives the
hexadecimal equivalent of the bit stream read by the base station.

 34

 Fig 8.4 - GUI Screenshot

 35

Photographs of the setup

 36

9. Conclusion

The system with the Base Station, RTU and the Communication handler was setup
successfully. RTU could sample 8 analog inputs and produce 8 digital outputs. RTU
computes RMS and average values of sampled data. Base Station initiates
communication from the RTU and retrieves data from it. This data is then displayed
graphically in the graphical user interface (GUI). Base Station and RTU communicate
via serial communication through RS-232 ports. DNP 3.0 protocol provides protection
against noise and signal distortion. Cyclic Redundancy Checks provides
communication reliability. Schematics for wireless communication with compatibility
details are provided.

DNP3 causes transmission delay between Base Station and RTU to be around half a
second. This is quite reasonable considering that it is not a very high speed
application device. Percentage error of the computations performed by the RTU is
1.32, which is within tolerable limits.

Scope for future work –

1. In case of any emergency the RTU should be able to initiate communication with
the Base Station. This requires analyzing the measured results at the RTU followed by
communication setup.

2. RTU can be provided with external memory which could be used to store history of
measured data. This could serve just as a black box in case of any damage to the
RTU.

3. The kit used in this project is a general platform for development. We could make
RTU more application specific by using a stand alone 80196 microcontroller.

 37

10. References

[1] SBC-196 Technical Reference Manual – Dynalog (India) Limited

[2] SBC-196 User’s Manual – Dynalog (India) Limited, October 2001, Rev. 1.0

[3] http://www.intel.com/design/mcs96/

[4] Virtual Instrumentation using LabVIEW – Sanjay Gupta and Joseph John, Tata

McGraw-Hill, 2005 .

[5] http://www.dnp.org

[6] A DNP3 Protocol Primer – Ken Curtis, Woodland Engineering; Revision A, 20

March 2005.

[7] Computer Networks, A systems approach 3rd Edition – Larry L. Peterson and

Bruce S. Davie, Morgan Kaufmann Publishers 2004.

Appendix A: Assembly Codes

Assembly Program Written with 80196KC Microcontroller

;**
**
;
; 8096.INC - DEFINITION OF SYMBOLIC NAMES FOR THE I/O REGISTERS
OF
; THE 8096 AND THE 80C196
; (C) INTEL CORPORATION 1983
;**

;
;/*
; * 8096 SFR's
; */
R0 EQU 00H:WORD ; R ZERO REGISTER
AD_COMMAND EQU 02H:BYTE ; W
AD_RESULT EQU 02H:WORD ;
AD_LO EQU 02H:BYTE ; R
AD_HI EQU 03H:BYTE ; R
AD_TIME EQU 03H:BYTE ; W
HSI_MODE EQU 03H:BYTE ; W
HSO_TIME EQU 04H:WORD ; W
HSI_TIME EQU 04H:WORD ; R
PTSSEL EQU 04H:WORD ; W
HSO_COMMAND EQU 06H:BYTE ; W
HSI_STATUS EQU 06H:BYTE ; R
PTSSRV EQU 06H:WORD ; W
SBUF EQU 07H:BYTE ; R/W
INT_MASK EQU 08H:BYTE ; R/W
INT_PEND EQU 09H:BYTE ; R/W
WATCHDOG EQU 0AH:BYTE ; W WATCHDOG TIMER
TIMER1 EQU 0AH:WORD ; R
TIMER2 EQU 0CH:WORD ; R
IOC3 EQU 0CH:BYTE ; W
BAUDRATE EQU 0EH:BYTE ; W
PORT0 EQU 0EH:BYTE ; R
PORT1 EQU 0FH:BYTE ; R/W
PORT2 EQU 10H:BYTE ; R/W
SP_CON EQU 11H:BYTE ; W
SP_STAT EQU 11H:BYTE ; R
IOC0 EQU 15H:BYTE ; W
IOS0 EQU 15H:BYTE ; R
IOC1 EQU 16H:BYTE ; W
IOS1 EQU 16H:BYTE ; R
PWM0_CONTROL EQU 17H:BYTE ; W
PWM1_CONTROL EQU 16H:BYTE ; W
PWM2_CONTROL EQU 17H:BYTE ; W

PWM_CONTROL EQU 17H:BYTE ; W
SP EQU 18H:WORD ; R/W
;
; 80C196 SFR's
IOC2 EQU 0BH:BYTE ; W
INT_PEND1 EQU 12H:BYTE ; R/W
INT_MASK1 EQU 13H:BYTE ; R/W
WSR EQU 14H:BYTE ; R/W
IOS2 EQU 17H:BYTE ; R
T2CNTC EQU 0CH:BYTE ; R/W

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

; Scans and Operates on Analog Input

include 80c196kc.inc

rseg at 1Ah

ax: dsw 1
bx: dsw 1
cx: dsw 1
dx: dsw 1
ex: dsw 1
fx: dsw 1
temp: dsw 1
disp_data: dsw 1
disp_adrs: dsw 1
disp_dcml: dsb 1
cmd_mode: dsb 1

square: dsw 1
pointer: dsw 1
iter: dsw 1
accum: dsw 1

counter: dsb 1
rms: dsw 1
rms_pointer: dsw 1
rms_hist: dsb 1
rms_recent: dsw 1

samples: dsb 1
destination: dsw 1
channel: dsb 1
temp1: dsb 1
temp_2: dsw 1
temp2: dsw 2

loop_count: dsb 1
inter1: dsw 1
inter2: dsw 1
disp_data_temp: dsw 1
disp_data_tmp1: dsw 1
table_ptr: dsw 1
pointer_2: dsw 1

power_acc1: dsw 1
power_acc2: dsw 1

;Registers for DNP 3.0 implementation
;------------------------------------

receive_flag: dsb 1
send_flag: dsb 1
synchronize: dsb 1
my_add_L: dsb 1
my_add_H: dsb 1
master_add_L: dsb 1
master_add_H: dsb 1
ACK: dsb 1
read_buffer: dsb 1
transmit_buf1: dsb 1
transmit_buf2: dsb 1

CRCin dsb 1
CRCout dsb 1
CRCloop dsb 1
x0 dsb 1
x1 dsb 1
x2 dsb 1

Assembly Code.asm 4/18/2006 2:06 PM

Page 1 of 16

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

x3 dsb 1
x4 dsb 1
x5 dsb 1
x6 dsb 1
x7 dsb 1
tempIN dsb 1
tempReg1 dsb 1
tempReg2 dsb 1
tempReg3 dsb 1

long_power equ power_acc1 :long
;...
spl equ sp :byte
sph equ (sp+1) :byte

long_bx equ bx :long
al equ ax :byte
ah equ (ax+1) :byte
bl equ bx :byte
;bh equ (bx+1) :byte
cl equ cx :byte
ch equ (cx+1) :byte
dl equ dx :byte
dh equ (dx+1) :byte
el equ ex :byte
eh equ (ex+1) :byte
fl equ fx :byte
fh equ (fx+1) :byte
disp_dat0 equ disp_data :byte
disp_dat2 equ (disp_data+1) :byte
disp_adr0 equ disp_adrs :byte
disp_adr2 equ (disp_adrs+1) :byte
temp_l equ temp :byte
temp_h equ (temp+1) :byte

buf: dsb 1
buf_data: dsb 1
check1: dsb 1
check2: dsb 1
read_rg: dsb 1
;..
; KEY CODE DECLARATIONS

brk_key equ 10h :byte
;..
;library routines adrs

time_lib equ 4002h :word
print_lib equ 4006h :word
serial_lib equ 400ah :word
hex_lib equ 400eh :word

stack_lmt equ 6200h :word
user_stack equ 6300h :word

buffer equ 6132h :word ;string
srl_sts_sav equ 615Bh :byte
;...

 cseg at 7000h

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;
; Program Starts Here ;
; ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;

Assembly Code.asm 4/18/2006 2:06 PM

Page 2 of 16

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

;; This Slave's Master's Address is ffff h
;;; This Slave's address is 0001 h
;; Synchronize byte recognized by this slave is 01111110 b
;

ldb synchronize,#01111110b ;synchronize byte
ldb my_add_H,#00h ;higher byte of slave address
ldb my_add_L,#01h ;lower byte of salve address
ldb master_add_H,#0ffh ;higher byte of master address
ldb master_add_L,#0ffh ;lower byte of master address
ldb ACK,#10101010b ;ACK byte for link control

;
;; Initialize flags used for DNP communication
;

ldb receive_flag,#00h
ldb send_flag,#00h

ld sp,#6400h
;ld bx,#msg
;ldb el,#3
;lcall serial_lib

;
;; This call creates square root look-up table
;; Once created this call can be commented
;

;lcall sqrt_table

;
;; Setting pointers for data storage
;

ld rms_pointer,#9000h
ldb rms_hist,#05h
ld rms_recent,#8FE8h

;
;; settings for serial communication
;;; Baud Rate = 2400
;; Clock Source = XTAL1
;

ldb BAUDRATE,#39h
ldb BAUDRATE,#81h
ldb SP_CON,#1bh

 ldb IOC1,#20h
ld fx,#600ch
ld bx,#ser_req
st bx,[fx]
ldb read_rg,#00h

start: ;
;; Start sampling - take 16 samples per cycle for 4 cycles i.e. 64 samples
;

ldb samples,#40h ;No of samples to acquire

Assembly Code.asm 4/18/2006 2:06 PM

Page 3 of 16

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

ld destination,#8000h ;starting address of stored values

;
;; Timer settings
;

ldb ioc2,#40h ;count every 8 machine states, count up, enable command
ldb ioc0,#02h ;reset timer2

;
;; HSO unit settings - sampling frequency of 16 samples/cycle
;

 ldb HSO_COMMAND,#11001111b ;CAM lock, start AD conversion based on timer2
 ld HSO_TIME,#03aah ;938d sampling interval (shd be 03aah)

ld fx,#0000h

;
;; Interrupt Settings
;

 ld bx,#6002h
 ld ex,#rd_adc
 st ex,[bx] ;write address of interupt service subroutine

ldb channel,#10h
 ldb ad_command,channel ;start conversion by hso
 ldb int_mask,#42h ;enable AD complete interrupt

ei

;
;; Reset timer - sampling frequency of 16 samples/cycle
;

ldb HSO_COMMAND,#11001110b ;CAM lock, reset timer2
ld HSO_TIME,#03abh ;time to reset timer2

pusha
ldb WSR,#01h ;switch to horizontal window 1
ldb T2CNTC,#01h ;clock internally
popa

Wait: ;
;; Wait for 16 samples to be taken
;

jne wait
incb channel ;scan next channel
ldb samples,#40h
inc destination
cmpb channel,#18h
je fin_samp
ldb ad_command,channel

sjmp wait ;again wait for next 16 samples

fin_samp: ;
;; all 8 channels sampled; proceed to calculations
;

Assembly Code.asm 4/18/2006 2:06 PM

Page 4 of 16

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

ldb ioc2,#80h ;clear CAM

;
;; 8 channels have 8 RMS values and 4 Pavg values
;;; Both RMS and Avg values yield 2 bytes of data
;;;; one time sampling of all 8 channels yield 24 bytes of data
;;; we store 4 time sampling result
;; In the 5th time we loop-back i.e. overwrite the 1st time result
;

cmp rms_recent,#9060h ; Is it the 5th time
jne no_loopback

ld rms_recent,#8fe8h ; Yes, then overwrite the 1st time result
no_loopback: add rms_recent,#18h ; No, simply store the result in the next locat

;
;; Compute the RMS values of the 8 channels
;

loop: ld pointer,#8000h
ldb cl,#08h

cmpt: ldb counter,#40h
lcall r_m_sq
st rms,[rms_pointer]

inc rms_pointer
inc rms_pointer
djnz cl,cmpt

;
;; Compute Pavg = Summation(Vi X Ii)/ n
;; Assume ch0 to be voltage,ch1 to be current and so on
;

power: ld pointer,#8000h
ld pointer_2,#8040h
ldb loop_count,#04h

n_ch_p: ldb counter,#40h
ld bx,#0000h
ld cx,#0000h
ld power_acc1,#0000h
ld power_acc2,#0000h
;ld cx,#0000h

avg_pw: ldb fl,[pointer]
ldb fh,[pointer_2]
mulub temp,fl,fh

add power_acc1,temp
addc power_acc2,cx

inc pointer
inc pointer_2
djnz counter,avg_pw

shr power_acc1,#06h
shl power_acc2,#0ah
add power_acc1,power_acc2

;shrl long_power,#06h

Assembly Code.asm 4/18/2006 2:06 PM

Page 5 of 16

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

st power_acc1,[rms_pointer]

inc rms_pointer
inc rms_pointer

;ld disp_data,power_acc1
;lcall disp

add pointer,#0040h
add pointer_2,#0040h
djnz loop_count,n_ch_p

;enable serial port interrupt here

;ldb INT_MASK,#40h

;
;; all 8 channels and computed once
;; Repeat the entire process again
;

next: djnz rms_hist, n_sample
ld rms_pointer,#9000h
ldb rms_hist,#05h

n_sample: ljmp start ;do next sampling

idle: sjmp idle ;never reached

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;
; Main program ends ;
; ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;--

;;;
; ;
; Sub routines start here ;
; ;
;;;

;;;
;;
; Sub routine to compute root mean square value
; @arg pointer - points to first sample
; @arg counter - no of samples to compute rms of
; @return rms - contains the root mean square value

r_m_sq: ld square,#0000h
sum_sq: ldb fl,[pointer]

ldb fh,fl
mulub temp,fh,fl
shr temp,#06h
add square,temp ;'square' stores the sum of squares of acquired data
inc pointer
djnz counter,sum_sq

cmp square,#0000h
jh intplt
ld rms,#0000h

Assembly Code.asm 4/18/2006 2:06 PM

Page 6 of 16

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497

ret

intplt: lcall traverse
sub temp2,square,inter1
ldb temp1,#10h
shll temp2,temp1
sub temp,inter2,inter1
divu temp2,temp
ld dx,temp2
ldb fh,fl
ldb fl,dh

cmpb fl,#00h
jne no_cor
incb fh

no_cor: ld rms,fx
ret

;--

;;;
;;
; Sub Routine to travers the square root table
; @return fl - holds the floor sqrt integer
; @return fh - holds the ceil sqrt integer
; @return inter1 - square of fl
; @return inter2 - square of fh

traverse: ld table_ptr,#7500h
ldb al,#00h

search: inc table_ptr
inc table_ptr
incb al
ld temp,[table_ptr]
cmp temp,square
je found
jh found
sjmp search

found: ld inter2,[table_ptr]
dec table_ptr
dec table_ptr
ld inter1,[table_ptr]

ldb fh,al
subb fl,al,#01h
ret

;--

;;;
;;
; Sub routine for a/d conversion complete event

rd_adc: ldb fh,ad_hi ;load low order byte
 stb fh,[destination] ;storing sampled data to memory

djnz samples,cont
cmpb samples,#00h
sjmp finish

cont: inc destination ;increament destination address
ldb ad_command,channel ;start conversion by hso

finish: ret

;---

Assembly Code.asm 4/18/2006 2:06 PM

Page 7 of 16

498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568

;;;
;;
; Subroutine to handle serial interrupt

ser_req: pusha

;Reset sampling
ldb samples,#40h
ld destination,#8000h
ldb channel,#10h

;Check for RI/TI interrupt
ldb buf,SP_STAT
andb check1,buf,#40h
jne ri
andb check2,buf,#20h
jne ti
sjmp ser_fin

ri: lcall ri_req
sjmp ser_fin

ti: lcall ti_req

ser_fin: popa
ret

;--

;;;
;;
; Subroutine to handle RI interrupt

ri_req: ldb buf_data,SBUF

;xorb port1,#00000001b

;;
;; ;;
;; This part of the code strips off the DNP 3.0 header from the received data ;;
;; ;;
;;

;
;; For each byte of DNP header we assign a flag number in receive_flag
;; This flag number is used to distinguish a particular byte of DNP header
;

sync1_recv: cmpb receive_flag,#00000000b
jgt sync2_recv

;
;; Check the first synchronize byte
;
cmpb buf_data,synchronize
jne clear_recv1
incb receive_flag

call initializeCRC ; compute CRC for DNP header
ldb CRCin,buf_data
call computeCRC
sjmp fin_write

sync2_recv: cmpb receive_flag,#00000001b
jgt length_recv

;

Assembly Code.asm 4/18/2006 2:06 PM

Page 8 of 16

569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639

;; Check the second synchronize byte
;
cmpb buf_data,synchronize
jne clear_recv1
incb receive_flag

ldb CRCin,buf_data ; compute CRC for DNP header
call computeCRC
sjmp fin_write

length_recv: cmpb receive_flag,#00000010b
jgt link_recv

;
;; Store remaining frame length (to be received)
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

incb receive_flag

ldb CRCin,buf_data ; compute CRC for DNP header
call computeCRC
sjmp fin_write

link_recv: cmpb receive_flag,#00000011b
jgt dest1_recv

;
;; Check the link control
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;jump to clear_recv if check fails

incb receive_flag

ldb CRCin,buf_data ; compute CRC for DNP header
call computeCRC
sjmp fin_write

dest1_recv: cmpb receive_flag,#00000100b
jgt dest2_recv

;
;; Check the upper byte of destination address
;
cmpb buf_data,my_add_H
jne clear_recv1
incb receive_flag

ldb CRCin,buf_data ; compute CRC for DNP header
call computeCRC
sjmp fin_write

clear_recv1: sjmp clear_recv

dest2_recv: cmpb receive_flag,#00000101b
jgt src1_recv

;
;; Check the lower byte of destination address
;
cmpb buf_data,my_add_L
jne clear_recv
incb receive_flag

ldb CRCin,buf_data ; compute CRC for DNP header

Assembly Code.asm 4/18/2006 2:06 PM

Page 9 of 16

640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710

call computeCRC
sjmp fin_write

src1_recv: cmpb receive_flag,#00000110b
jgt src2_recv

;
;; Check the upper byte of source address
;
cmpb buf_data,master_add_H
jne clear_recv
incb receive_flag

ldb CRCin,buf_data ; compute CRC for DNP header
call computeCRC
sjmp fin_write

src2_recv: cmpb receive_flag,#00000111b
jgt crc_recv

;
;; Check the lower byte of source address
;
cmpb buf_data,master_add_L
jne clear_recv
incb receive_flag

ldb CRCin,buf_data ; compute CRC for DNP header
call computeCRC
sjmp fin_write

crc_recv: cmpb receive_flag,#00001000b
jgt data_recv

;
;; Check the CRC
;
ldb CRCin,#00h
call computeCRC
call resultCRC

;compare buf_data with CRCout
;jump to clear_recv if check fails
cmpb buf_data,CRCout
jne clear_recv
incb receive_flag
sjmp fin_write

data_recv: cmpb receive_flag,#00001001b
jgt dataCRC_recv
ldb read_buffer,buf_data
incb receive_flag
sjmp fin_write

dataCRC_recv: ; match CRC byte received with that computed on read_buffer
; if successful then process the request i.e. jump to check_io
; else jump to clear_recv

call initializeCRC
ldb CRCin,read_buffer
call computeCRC
ldb CRCin,#00h
call computeCRC
call resultCRC

;compare buf_data with CRCout

Assembly Code.asm 4/18/2006 2:06 PM

Page 10 of 16

711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781

;if comparision true => proceed else jump to check_io
cmpb buf_data,CRCout
jne clear_recv

ldb buf_data,read_buffer
ldb receive_flag,#00h
sjmp check_io

clear_recv: ;
;; One or more of the DNP checks failed => Data corrupted
;; Sender has to re-transmit => receive_flag set to 00h
;

ldb receive_flag,#00h
sjmp fin_write ;exit RI interrupt handler

;...

check_io: ;
;; To check for rms/avg value read or digital output
;
andb read_rg,buf_data,#40h
jne read_req

write_req: ;
;; Read values
;
ldb ah,#00h
andb read_rg,buf_data,#20h
je write_rms
ldb ah,#08h

write_rms: ld fx,rms_recent
andb al,buf_data,#1fh
addb al,ah

ser_loop: je transmit
inc fx
inc fx
decb al
sjmp ser_loop

transmit: ;
;; Trnsmit the byte read to the base station
;

ldb transmit_buf1,[fx]
inc fx
ldb transmit_buf2,[fx]
ldb SBUF,synchronize

;
;; Start computing CRC for header
;
call initializeCRC
ldb CRCin,synchronize
call computeCRC

sjmp fin_write

read_req: ;
;; Digital output
;
ldb read_rg,#01h
andb fl,buf_data,#3fh
shlb read_rg,fl
xorb port1,read_rg

Assembly Code.asm 4/18/2006 2:06 PM

Page 11 of 16

782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852

fin_write: ret

;--

;;;
;;
; Suroutine to handle TI interrupt

ti_req: ;
;; This subroutine gets called when one byte-transmission completes
;

;;
;; ;;
;; This part of the code appends DNP 3.0 header to the outgoing data ;;
;; ;;
;;

;
;; For each byte of DNP header sent we assign a flag number in send_flag
;; This flag number is used to distinguish a particular byte of DNP header to be sent
;

sync2_send: cmpb send_flag,#00000000b
jgt length_send

;
;; Send Synchronize byte 2
;
ldb SBUF,synchronize
incb send_flag

ldb CRCin,synchronize ; next byte to be computed CRC on
call computeCRC
sjmp fin_ti

length_send: cmpb send_flag,#00000001b
jgt link_send

;
;; Send the number of data bytes which follow the header
;
ldb SBUF,#02h

ldb CRCin,#02h ; next byte to be computed CRC on
call computeCRC
incb send_flag
sjmp fin_ti

link_send: cmpb send_flag,#00000010b
jgt dest1_send

;
;; Link control
;
ldb SBUF,ACK

ldb CRCin,ACK ; next byte to be computed CRC on
call computeCRC
incb send_flag
sjmp fin_ti

dest1_send: cmpb send_flag,#00000011b
jgt dest2_send

Assembly Code.asm 4/18/2006 2:06 PM

Page 12 of 16

853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923

;
;; Send upper byte of Destination address
;
ldb SBUF,master_add_H

ldb CRCin,master_add_H ; next byte to be computed CRC on
call computeCRC
incb send_flag
sjmp fin_ti

dest2_send: cmpb send_flag,#00000100b
jgt src1_send

;
;; Send lower byte of Destination address
;
ldb SBUF,master_add_L

ldb CRCin,master_add_L ; next byte to be computed CRC on
call computeCRC
incb send_flag
sjmp fin_ti

src1_send: cmpb send_flag,#00000101b
jgt src2_send

;
;; Send upper byte of source address
;
ldb SBUF,my_add_H

ldb CRCin,my_add_H ; next byte to be computed CRC on
call computeCRC
incb send_flag
sjmp fin_ti

src2_send: cmpb send_flag,#00000110b
jgt crc_send

;
;; Send lower byte of source address
;
ldb SBUF,my_add_L

ldb CRCin,my_add_L ; next byte to be computed CRC on
call computeCRC
incb send_flag
sjmp fin_ti

crc_send: cmpb send_flag,#00000111b
jgt data_send1

;
;; CRC check
;
ldb CRCin,#00h
call computeCRC
call resultCRC

ldb SBUF,CRCout
incb send_flag
sjmp fin_ti

data_send1: cmpb send_flag,#00001000b
jgt data_send2
ldb SBUF,transmit_buf1

Assembly Code.asm 4/18/2006 2:06 PM

Page 13 of 16

924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994

incb send_flag
sjmp fin_ti

data_send2: cmpb send_flag,#00001001b
jgt dataCRC_send
ldb SBUF,transmit_buf2
incb send_flag
sjmp fin_ti

dataCRC_send: cmpb send_flag,#00001010b
jgt fin_transmit

;
;; CRC check
;
call initializeCRC
ldb CRCin,transmit_buf1
call computeCRC
ldb CRCin,transmit_buf2
call computeCRC
ldb CRCin,#00h
call computeCRC
call resultCRC

ldb SBUF,CRCout
incb send_flag
sjmp fin_ti

fin_transmit: ;
;; Full packet transmitted
;; Next packet transmission should from 1st byte of DNP header => send_flag = 0
;

ldb send_flag,#00h

fin_ti: ret

;---

;;;
;;
; Subroutines to compute 8 bit CRC (Cyclic Redundancy Check) of one byte
; @param CRCin - byte whose CRC has to be computed
; @return CRCout - one byte CRC

initializeCRC: ldb x0,#00h
ldb x1,#00h
ldb x2,#00h
ldb x3,#00h
ldb x4,#00h
ldb x5,#00h
ldb x6,#00h
ldb x7,#00h

ret

computeCRC: ldb CRCloop,#08h

loopCRC: ldb tempIN,#00h
shlb CRCin,#01h
addcb tempIN,tempIN
ldb tempReg1,x7
xorb tempReg1,x1
ldb tempReg2,x7
xorb tempReg2,x0

Assembly Code.asm 4/18/2006 2:06 PM

Page 14 of 16

995
996
997
998
999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065

ldb tempReg3,x7
xorb tempReg3,tempIN

ldb x7,x6
ldb x6,x5
ldb x5,x4
ldb x4,x3
ldb x3,x2
ldb x2,tempReg1
ldb x1,tempReg2
ldb x0,tempReg3

decb CRCloop
jne loopCRC

ret

resultCRC: shlb x7,#07h
shlb x6,#06h
shlb x5,#05h
shlb x4,#04h
shlb x3,#03h
shlb x2,#02h
shlb x1,#01h

ldb CRCout,#00h
addb CRCout,x0
addb CRCout,x1
addb CRCout,x2
addb CRCout,x3
addb CRCout,x4
addb CRCout,x5
addb CRCout,x6
addb CRCout,x7

ret

;---

;;;
;;
; This is a Sub routine to build a lookup table to compute square root

sqrt_table: ld fx,#7500h
ldb al,#00h
ld bx,#0000h
st bx,[fx]

store: incb al
inc fx
inc fx
mulub bx,al,al
st bx,[fx]
cmpb al,#0ffh
je done
sjmp store

done: ret

;---

;;;
;;
; This sub routine is for displaying a word to the terminal

Assembly Code.asm 4/18/2006 2:06 PM

Page 15 of 16

1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076

disp: ld disp_data_temp,ax
ld disp_data_tmp1,fx
ld ax,disp_data
ldb el,#06h
lcall serial_lib
ld fx,disp_data_tmp1
ld ax,disp_data_temp
ret

 end

Assembly Code.asm 4/18/2006 2:06 PM

Page 16 of 16

Appendix B: LabVIEW 7.1 Codes
(Written with a PC)

sem2_1.vi
D:\personal\courses\BTP\Sem2 Codes\sem2_1.vi
Last modified on 4/4/2006 at 1:09 PM
Printed on 4/16/2006 at 11:12 PM

Page 1

Update Mode - Continuous Mode

Visible Visible

Waveform ChartWaveform Chart

Visible

RMS Voltage

Visible

RMS Current

Visible

Power Factor

Visible

Average Power

 False

stop

Power Factor

Average Power

RMS Voltage

RMS Current256

256

0
1

0
0

1
1

1
0

2
1

2
0

51

51

2601
256

Waveform Chart

12

String Read

3

1

True

1

 True

Select Line

64

 True

stop

Input Line

32

2

3000

Value

Average Power

Value

Power Factor

Value

RMS Current

Value

RMS Voltage

0

0

0

0

2400

COM1

History

Waveform Chart0

0

0

0

0

stop

Tab Control 2

Visible

RMS Voltage

Visible

RMS Current

Visible

Power Factor

Visible

Average Power

Visible

Waveform Chart

Visible

 True

 False

False False

DNP_in_2.vi
D:\personal\courses\BTP\Sem2 Codes\DNP_in_2.vi
Last modified on 4/4/2006 at 11:50 AM
Printed on 4/16/2006 at 11:09 PM

Page 1

read buffer

0Synchronize

1Synchronize

2Length

3Link Control

4Destination U

5Destination L

6Source U

7Source L

8CRC

9

01111110

01111110

11111111

11111111

00000000

00000001

0

0

1

DNP_out_2.vi
D:\personal\courses\BTP\Sem2 Codes\DNP_out_2.vi
Last modified on 4/4/2006 at 1:09 PM
Printed on 4/16/2006 at 11:07 PM

Page 1

String

error out

error out 2

duplicate VISA resource name

duplicate VISA resource name 2

100

1101111110Synchronize

01111110Synchronize

00000000Destination U

10101010Link Control

00000001Destination L

11111111Source U

11111111Source L

00000001Length

CRC_1.vi
D:\personal\courses\BTP\Sem2 Codes\CRC_1.vi
Last modified on 4/4/2006 at 1:14 PM
Printed on 4/16/2006 at 11:10 PM

Page 1

string

