Preparing Data For The Data Lake

Alekh Jindal, Samuel Madden
CSAIL, MIT

Abstract

Data preparation is increasingly becoming one of the biggest chal-
lenges in processing big data. While recent tools such as Tamer
and Trifacta address the problem of integrating and cleaning the
datasets as they come in, preparing these datasets for efficient pro-
cessing over a variety of query workloads is still challenging. In
this talk, I will discuss these challenges and describe our tool which
allows for fine-grained data preparation, via a data preparation plan,
and efficiently runs this plan while uploading the data to HDFS.

1. INTRODUCTION

Data preparation is increasingly becoming one of the biggest

challenges in processing big data and good preparation is critical
to making good use of the data, i.e. quickly moving from data to
insights. This preparation includes (i) getting data in from a variety
of sources, incurring tasks such as data integration and cleaning to
make the data usable, and (ii) using this data in a variety of ways
(application workload), incurring tasks such as logical and physical
data design to deliver good performance. A number of recent tools,
such as Tamer [8] and Trifacta [9], have addressed the problem of
integrating and cleaning datasets. However, preparing datasets in
order to efficiently process them over different workloads still re-
mains a challenge. This is because end users increasingly face het-
erogenous and ad-hoc query workloads for which they want to pre-
pare their data in an ad-hoc manner. Such data preparation could in-
volve building samples or other statistics, creating layouts, indexes,
partitions, and other physical structures, and applying compression
and other encoding schemes. Existing approaches to workload-
based data preparation have three major limitations:
(1.) Ease-of-use. The current practice, typically, is to write ad-
hoc scripts, e.g., using Python, Perl, or Bash, which is tedious
and time consuming. Furthermore, since different workloads re-
quire different data preparation, analysts often end up duplicating
much of their effort. On the other extreme, languages such as Ro-
dentStore [3] and WWhow! [7] allow users to express their data
designs at a high level. However, it is not clear how these trans-
late to the actual underlying data preparation tasks. Therefore, we
need a more principled way of allowing data analysts and scientist
to specify their workload-based data preparation steps.

(2.) Flexibility. Several existing tools are limited to specific
data preparation steps, such as indexing or partitioning the entire
datasets. Given that workloads are often heterogenous and chang-
ing, end users want greater flexibility in preparing their datasets.
This is important because they may prepare data differently in dif-
ferent scenarios, prepare data heterogeneously to guard against the
worst case scenarios, or selectively prepare only the relevant por-
tions of the data in order to avoid high preparation costs. All this
requires the end users to have full control over their dataset and the
flexibility to arbitrarily prepare them.

(3.) Efficiency. Data preparation is typically a time consuming
process and the analysts need to wait for a significant amount of

time while the data is being prepared. This is counter productive in
the modern setting where the analyst would want to start using the
data as soon as it is available, perform his analysis, and move on to
the next dataset. This means that data should be prepared as soon
as the it gets stored in a distributed storage system and the prepara-
tion should not take longer than processing the raw data itself. This
calls for preparing the data in an efficient manner.

In this paper, we describe building a system for preparing data
in a scalable manner. Our goal is to allow end-users to easily and
efficiently prepare their datasets for a variety of workload config-
urations. In the following, we describe our approach in Section 2,
and discuss several use-cases in Section 3.

2. OUR APPROACH

We propose a new tool which eases much of the end user pain for
preparing their datasets over a given workload. Below we describe
how our tool address the three challenges described in Section 1,
namely the ease-of-use, flexibility, and efficiency.

Data Preparation Plan. Our tool allows developers to specify the
data preparation at a logical level, i.e., as a set of operators describ-
ing the data preparation task. The system takes care of running
these operators in a distributed fashion, allowing developers to fo-
cus on actual preparation logic rather than the messy execution de-
tails. To do this, our tool provides a logical dataset abstraction,
wherein developers reason about the logical datasets, e.g., sets of
tuples or lists of log records. This is more natural to interact as
developers do not have to worry about how the data is physically
stored in the underlying file system. Internally, a logical dataset
can be physically represented in multiple ways (e.g, as one file or
many). As a result of this abstraction, developers can express the
data preparation logic in a file-system independent manner, thereby
making it easier to configure, reuse, and extend the preparation. All
without hacking into the file system or the query engine.

Fine-grained Data Flow. Data preparation will vary depending on
the application workload. Therefore, instead of hard-coding a fixed
set of preparation into the underlying file system [6, 5, 4], our tool
allows developers to specify custom data preparation. Developers
can also specify different preparation for different datasets (in the
same file system) as well as change them later on. To do this, our
tools allows for data preparation at different data granularity, e.g.,
the entire dataset, or a given replica, block, or tuple. Each data item
has a list of one or more labels (IDs) associated with it, denoting the
preparation that have been applied to it. For example, a replication
operator assigns a replica ID, a placement operator assigns a loca-
tion ID, and a serializer operator assigns a serialization ID. These
labels (or IDs) could then be used to conditionally or selectively
prepare different portions of the data differently. For example, the
users can compose multiple operators by chaining, pipelining, or
branching them based on the data item labels. As a result, users
have fine-grained control to prepare their data for their workloads.

Prepare-As-You-Upload. Given that data preparation is needed



for almost all modern applications, our tool allows developers to
prepare their dataset while it is being uploaded into a distributed
file system. This means that the prepared data is available as soon
as it is uploaded. Our tool interacts and tightly integrates with the
HDFS, and masks much of the preparation costs within more ex-
pensive operations, such as disk and network 1/O, during upload.
Furthermore, it runs the preparation jobs on a cluster of machines,
utilizing the multi-core CPUs on each machine and efficiently mov-
ing the data during the preparation process. As a result, there is
very little overhead of data preparation and it does not block the
resources for the actual query processing. Finally, our tool does not
change the underlying HDFS. Rather, it works as a software layer
that reads and write data on the application or users’ behalf. As a
result, it can work out-of-the-box with existing HDFS installations.

3. USE CASES

We now show four different use cases where our tool makes it
easy to prepare datasets for different workloads.

(1.) Violation Detection. Our tool allows users to perform viola-
tion detection while uploading their datasets, thereby speeding up
the data cleaning process. Users can detect which portions of the
data violate their business rules, often the most expensive step in
the data cleaning process [2], and apply simple repairs. Though
data repair may be an iterative process, our tool allows users to ap-
ply one-pass repairs on their datasets. For example, consider the
TPC-H lineitem table, which includes one entry per item per or-
der in a hypothetical business analytics application. This table in-
cludes a shipdate field (the date the item shipped) and a linestatus
field (whether the item has shipped or not). Suppose we may want
to enforce a functional dependency (FD) that shipdate determines
linestatus, i.e., that any product shipped on a particular date has
the same linestatus. Our tool allows users to detect all data items
which violate this FD, i.e., that have the same shipdate but different
linestatus, using the following plan of two blocks b,and b,:
hl = Ppi\rse, rangePartition, 64mbPartition, store
bz = PshuffleParse, detectViolations

In this preparation plan, b, is a pipeline of operators that range par-
titions the data on shipdate and collects each partition in a different
physical file, which are then stored on HDFS. We then iterate over
every pair of data items in each range partition and check whether
or not there is a violation using a detect operator (block b,). These
violated records could subsequently be output to a violations file
(for correction) or simply discarded.

(2.) Data Sampling. Sampling is a common technique to gather
quick insights from very large datasets [1]. However, a key prob-
lem in using samples is the process of generating samples them-
selves: producing a sample requires an entire pass over all of the
data. To help with sampling, our tool allows users to collect sam-
ples as the data is being uploaded, with very minimal overhead.
For example, we can create Bernoulli samples by probabilistically
replicating some of the tuples in the dataset. The replicated data
items form the samples and are collected into a separate physical
file. The preparation plan for sampling consists of a block b of three
Operators: b = Pparsefstore,samplestore]- 1 he braces after parse operator
indicate that the output is fed to both store and sampleStore. This
means that the parsed tuples are stored in full as well as sampled.
Likewise, we can also perform reservoir sampling by adding each
data item into a reservoir (and removing items from it with a given
probability) and then producing the sampled data items in the end,
i.e., in the finalize method of the preparation operator.

(3.) Data Analytics. Our tool also allows developers to easily
create physical designs, without making deep changes to HDFS or

software installations. For example, while HDFS only considers
the physical data blocks for data placement, our tool also enables
placement based on the logical content of data blocks. A prepara-
tion plan with content-based data placement is as follows:

b 1= Pparse, rangePartition, 64mbPartition

bz = Pdummy [hotLocate, coldLocate]

b3 = Pstore
In this preparation plan, we have two Locator operators, one for
hot data blocks and another for the cold data blocks. Such content-
based data placement allows users to control how the data is dis-
tributed logically (e.g., based on the value of some attribute) and
where the query processing takes place. This has several interest-
ing applications, including: (i) utilizing only a portion of the cluster
to save energy or multiplex resources, (ii) improving data locality,
and (iii) isolating concurrent queries to different nodes.

(4.) Storage Space Optimizations. Despite the plummeting price
of disks, storage space still remains a concern in replicated stor-
age systems with large datasets. Our tool offers several methods
to deal with this. Consider replication for instance. A distributed
file system typically constraints how data is replicated. For exam-
ple, HDFS employs file-based replication that causes all parts of
the file to be replicated in an identical manner. Users can only
control how many times a file is replicated. Our tool allows users
to control both what parts of the data are replicated and how many
times. This control becomes crucial when different parts of the data
have different relative importance. For example, a user storing we-
blogs in HDFS might replicate the most recent logs (hot data) more
frequently than the older logs (cold data). To do this, user would
simply apply a range partitioner (based on date) to cause data in the
hot range to be replicated more frequently than other data. Such a
preparation plan is as follows:
b= Pparse. rangePartition [10xReplicate, 2xReplicate], store

Such a preparation plan saves storage space for the large fraction
of data that is cold and achieves better data locality over hot data,
resulting in better overall performance on skewed workloads.

4. CONCLUSION

Data preparation is crucial to efficient data processing. However,
existing tools to prepare data for a given workload are monolithic
and limited. In this paper, we described a fine-grained approach to
data preparation which allows developers full control over how to
preprocess and prepare their datasets, using a logical data prepara-
tion plan. As a result, developers can quickly prepare their datasets
for a variety of use-cases, including violation detection, data sam-
pling, data analytics, and storage space optimizations.

S. REFERENCES

[1] S. Agarwal and al. BlinkDB: Queries with Bounded Errors and
Bounded Response Times on Very Large Data. In EuroSys, 2013.

[2] X. Chu, . F. Ilyas, and P. Papotti. Holistic Data Cleaning: Putting
Violations into Context. In ICDE, 2013.

[3] P. Cudré-Mauroux, E. Wu, and S. Madden. The Case for RodentStore:
An Adaptive, Declarative Storage System. In CIDR, 2009.

[4] J. Dittrich and al. Only Aggressive Elephants are Fast Elephants.
PVLDB, 5(11):1591-1602, 2012.

[S] M. Y. Eltabakh and al. CoHadoop: Flexible Data Placement and Its
Exploitation in Hadoop. PVLDB, 4(9):575-585, 2011.

[6] A.Jindal, J.-A. Quiané-Ruiz, and J. Dittrich. Trojan data layouts: right
shoes for a running elephant. In SoCC, page 21, 2011.

[7]1 A.Jindal, J.-A. Quiané-Ruiz, and J. Dittrich. WWHow! Freeing Data
Storage from Cages. In CIDR, 2013.

[8] M. Stonebraker et al. Data Curation at Scale: The Data Tamer System.
In CIDR, 2013.

[9] Trifacta, http://www.trifacta.com.



	Introduction
	Our Approach
	Use Cases
	Conclusion
	References

