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ABSTRACT
Data partitioning is crucial to improving query performance and
several workload-based partitioning techniques have been proposed
in database literature. However, many modern analytic applications
involve ad-hoc or exploratory analysis where users do not have a
representative query workload a priori. Static workload-based data
partitioning techniques are therefore not suitable for such settings.
In this paper, we propose Amoeba, a distributed storage system
that uses adaptive multi-attribute data partitioning to efficiently
support ad-hoc as well as recurring queries. Amoeba requires zero
set-up and tuning effort, allowing analysts to get the benefits of
partitioning without requiring an upfront query workload. The key
idea is to build and maintain a partitioning tree on top of the dataset.
The partitioning tree allows us to answer queries with predicates by
reading a subset of the data. The initial partitioning tree is created
without requiring an upfront query workload and Amoeba adapts
it over time by incrementally modifying subtrees based on user
queries using repartitioning. A prototype of Amoeba running on
top of Apache Spark improves query performance by up to 7x over
full scans and up to 2x over range-based partitioning techniques
on TPC-H as well as a real-world workload.
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Figure 1: Need for robust data partitioning.

1 INTRODUCTION
Data partitioning is a well-known technique for selecting subsets
of data and a myriad of workload-based partitioning techniques
have been proposed in the database literature [4, 12, 24, 26, 31, 34].
Modern data analytics, however, tends to involve ad-hoc and ex-
ploratory analysis where a static query workload is not known a
priori. For example, an analyst may look for patterns in a database
of multi-dimensional web click events (with user history, demo-
graphic information, and platform information as dimensions). The
analyst may want to view this data according to any of it’s dimen-
sions – e.g., they may want to query according to the user’s past
browsing patterns, by their age or income, or by whether they are
using a mobile phone or a laptop. As the specific set of attributes
of interest is not necessarily known upfront, workload-based parti-
tioning techniques cannot be applied. We have observed that this
is often a problem in practice. For example, we analyzed a pro-
duction database workload traces from an Internet of Things (IoT)
startup company and found that even after seeing the first 80% of
the queries, the remaining 20% of the workload still contained 57%
new queries.

Figure 1(a) illustrates the data partitioning dilemma that ana-
lysts face with these newer workloads. They are either stuck with
naïve size based partitioning that offers no data skipping capabil-
ity and hence very poor performance (full scan). Or, alternatively,
they could pick one of the more recent adaptive partitioning tech-
niques (e.g., cracking [20]) that would make the first few queries
even slower than full scan, but will gradually improve if successive
queries are on the same dimension, i.e., having a selection predicate
on the same attribute. In case the query dimension changes, the
performance again goes back worse than full scan before gradually
improving with successive queries on the new dimension (we call it
naïve adaptive partitioning). This is really painful for an analyst ex-
ploring multiple dimensions: she wants a data partitioning scheme
that is robust to the ad-hoc nature of her workload and provides good
performance from the first query itself, adaptively improving from
there on.

https://doi.org/10.1145/3127479.3131613
https://doi.org/10.1145/3127479.3131613
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In this paper, we present a novel data partitioning scheme that
creates an upfront (multi-dimensional) partitioning tree to chunk
data across all attributes in the schema. It then adaptively modifies
the (multi-dimensional) tree based on the user queries. Figure 1(b)
shows an example partitioning tree for a 0.5GB dataset over 4
attributes with block size 64MB. Each node splits the data arriving
based on the cut-point eg: node B5 splits the data arriving such that
the left subtree has tuples with B ≤ 5 and the right subtree has
tuples with B > 5. The data is split into 8 blocks and each block
has additional partitioning metadata. For example, block 1’s tuples
satisfy A ≤ 4 & B ≤ 5 & D ≤ 4. The advantage of this partitioning
tree is that it is possible to answer a query with a predicate on any
attribute by reading a subset of partitions, rather than scanning the
whole table. Of course, the benefit per query is less than if the data
were completely partitioned on the exact attributes the query used.
A second advantage is that it is possible to refine the partitioning
over time, in response to patterns observed in queries that are run in
the system. We show that this can be done in a lightweight fashion,
by merging and repartitioning a few blocks at a time.

We implemented this idea in a new storage system we have
built called Amoeba. Amoeba is designed with two key proper-
ties in mind: (1) it requires no upfront query workload, while still
providing good performance for a wide range of ad-hoc queries;
(2) as users pose more queries over certain attributes, it adaptively
repartitions the data, to gradually perform better on queries over
frequent attributes and attribute ranges. Note that our approach is
complementary to many other physical storage optimizations, e.g.,
column-stores, and they could still be applied to our partitioning
scheme, e.g., individual columns or column groups could easily be
separately partitioned and accessed in our approach.

In summary, we make the following major contributions:

(1.) We describe a set of techniques to partition a dataset over
several attributes and propose an algorithm to generate an initial
partitioning tree. Our partitioning tree spreads the benefits of data
partitioning across all attributes in the schema. It does not require an
upfront queryworkload and also handles data skew and correlations
(Section 3).
(2.) We describe an algorithm to adaptively repartition the data
based on the observed workload. Our approach repartitions only
the accessed portions of the data and uses divide-and-conquer
to efficiently pick the best repartitioning strategy, such that the
expected benefit of repartitioning outweighs the expected cost. To
the best of our knowledge, this is the first work to propose adaptive
data partitioning for analytical workloads on distributed systems
(Section 4).
(3.) We implement our system as a storage engine for Spark and
SparkSQL (Amoeba could equally work with any other distributed
database system) (Section 5).
(4.) We present a detailed evaluation of the Amoeba storage system
on real and synthetic query workloads to demonstrate three key
properties: (i) robustness in terms of improved performance over
ad-hoc queries right from the start, (ii) adaptivity to the changes
in the query workload, and (iii) can use workload hints to outper-
form workload-aware static data partitioning. We also evaluate our
system on a real query workload from an IoT startup (Section 6).
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Figure 2: Amoeba Architecture

2 AMOEBA OVERVIEW
Amoeba exposes a relational storage manager, consisting of a col-
lection of tables. A query to Amoeba is of the form <table, (filter
predicates)>, for example < employee, (aдe > 30, 100 ≤ salary ≤
200) >. As the table is stored based on the table’s partitioning tree,
Amoeba is able to answer the query by accessing only the relevant
data blocks. Figure 2 shows the overall architecture of Amoeba. The
three key components are:
(i) Upfront partitioner. The upfront partitioner partitions a dataset
into blocks and spreads them throughout a block-based file system.
The blocks are created based on a partitioning tree, without requir-
ing a query workload. Note that since Amoeba partitions the data
along several dimensions, we could end up de-clustering the data
blocks across machines and performing random I/Os for each block.
However, this is still fine; large block sizes in distributed file sys-
tems [18] combined with fast network speeds lead to remote reads
being almost as fast as local reads [6, 9]. Essentially, we sacrifice
some data locality in order to quickly locate the relevant portions
of the data on each machine in a distributed setting.
(ii) Storage Engine. The storage engine builds on top of a block-
based storage system to store tables. Each table represents a dataset
loaded using the upfront partitioner. The table contains an index
file which stores the partitioning tree used to partition the dataset
and the partitioned dataset as a collection of data blocks. In addi-
tion, we also store a query log containing the most recent queries
that accessed the dataset and a sample of the dataset whose use is
described later.
(iii) Adaptive Query Executor. The adaptive query executor takes
queries in the form of a predicated scan and returns back the match-
ing tuples. As Amoeba internally stores the data partitioned by the
partitioning tree, it is able to skip many data blocks while answering
queries. The query first goes to the optimizer. When the data blocks
accessed by the query are not perfectly partitioned, the optimizer
considers repartitioning some or all of the accessed data blocks, as
they are accessed by the query and using the query predicates as
cut-points. We use a cost model to evaluate the expected cost and
benefit of repartitioning.

Amoeba integrates into the Spark/HDFS stack as a custom data
source that supports predicate pushdown. It can be queried from a
relational data processing framework like Spark SQL [2] or Hive [1]
that supports custom data sources. The Spark SQL optimizer pushes
predicates down to the scan and calls Amoeba with the predicated
scan query. The system returns the matching tuples as a Spark RDD,
which is then used by Spark SQL to do subsequent operations like
join processing and aggregation. The Amoeba storage system is self-
tuning, lightweight (both in terms of the upfront and repartitioning
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costs), and does not increase the storage space requirements. Re-
partitioning happens continuously underneath the interface in a
way that is invisible to the user.

In the rest of the paper, we describe an efficient predicate-based
data access system that does data skipping to improve query perfor-
mance. Extension to do efficient join processing on top of Amoeba
is discussed in a companion paper [22].

3 UPFRONT DATA PARTITIONING
A distributed storage system, such as HDFS, subdivides a dataset
into smaller chunks, called blocks, based on size (usually 64MB or
128MB). Prior workload-aware techniques, such as content-based
chunking [8] and feature-based blocking [31], create blocks such
that irrelevant blocks could be quickly skipped for the specific
query workload. We go a step further by creating blocks based
on a partitioning tree that allows us to skip data over almost all
ad-hoc queries, without having any information about the query
workload. Such a partitioning also serves as a good starting point
for the adaptive query executor to improve upon.

We first present the three key ideas used in building the partition-
ing tree: heterogeneous branching to accommodate many attributes
into a binary partitioning tree, the concept of attribute allocation to
capture the average partitioning effort to be spent on each attribute,
and median-based splitting to handle skew and correlation in the
dataset. Finally, we describe our upfront partitioning algorithm
which uses these ideas to come up with a partitioning tree for a
given dataset.

3.1 Heterogeneous Binary Partitioning Tree
We represent the partitioning tree as a balanced binary tree, i.e., we
successively partition the dataset into two until we reach the max-
imum partition size1. The choice of binary tree is deliberate as it
is more general (a four-way partitioning can be achieved by two
successive two-way partitioning) as well as fine-granular when
adapting the tree to workloads changes later. Each node in the tree
is represented as Ap , where A is the attribute being partitioned on
and p is the cut-point. All tuples with A ≤ p go to the left subtree
and rest go to the right subtree. A leaf node in the tree is a bucket,
having a unique identifier and a file name in the underlying file
system. This file contains the tuples that satisfy the predicates of
all nodes traversing upwards from the bucket to the root of the
tree. Note that an attribute can appear in multiple nodes in the tree.
Having multiple occurrences of an attribute in the same branch of
the tree increases the number of ways the data is partitioned on
that attribute.

Figure 3(a) shows a partitioning tree analogous to the k-d tree [7].
A k-d tree typically partitions the space by considering the attributes
in a round robin fashion, until the smallest partition size is reached.
Hence, the tree can only accommodate as many attributes as the
depth of the tree. For a dataset size D, minimum partition size P ,
and n way partitioning over each attribute, the partitioning tree
contains ⌊loдn D

P ⌋ attributes. With n = 2, D = 1TB, and P = 64MB,
we can only accommodate 14 attributes in the partitioning tree.
However, many real-world schemas have way more attributes.

1For HDFS, we take the block size as the maximum partition size.
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Figure 3: Partitioning Techniques.

Therefore, we introduce heterogeneous branching in order to ac-
commodate more attributes by partitioning different branches of
the partitioning tree on different attributes. In other words, we sac-
rifice the best performance on a few attributes to achieve robustness,
i.e., improved performance over more attributes. This is reasonable
as without a workload, there is no evident reason to prefer one
attribute over another. Figure 3(b) shows a partitioning tree with
heterogeneous branching. After partitioning on attribute A, the left
side of the tree partitions on B while the right side partitions on
C . Thus, we are now able to accommodate 4 attributes, instead of
3. However, attributes B and D are each partitioned on 75% of the
data while attribute C is partitioned on 50%. As a result, ad-hoc
queries would now gain partially over all the four attributes, which
makes the partitioning more effective.

The number of attributes in the partitioning tree, with c as the
minimum fraction of the data partitioned by each attribute and
r as the number of replicas, is given as 1

c · ⌊loдn
D
P ⌋. With n = 2,

D = 1TB, P = 64MB and c = 50%, the number of attributes that can
be partitioned is 28. Note that the number of attributes that can be
partitioned increases with the dataset size. This shows that with
larger dataset sizes, upfront partitioning is even more useful for
quickly finding the relevant portions of the data.

3.2 Attribute Allocation
Our goal is to allocate attributes to nodes in the heterogenous binary
partitioning tree such that all attributes have similar advantage in
terms of data skipping. To do this, we define the allocation of an
attribute as the weighted sum of its fanout on each of the nodes it
appears in the partitioning tree T , i.e., the allocation of attribute i
is given as:

Allocationi (T ) =
∑

n∈nodes (T ,i )

DataFractionn · Fanoutn

The Allocation defined above gives the granularity of data par-
titioning over an attribute. Higher allocation means more data
skipping is possible. For example, in Figure 3(b), attribute B appears
on two nodes, one covering 50% of the data while the other covering
25% of the data. Thus, B has an allocation of (0.5∗2+0.25∗2) = 1.5.
With no query workload, our goal is to balance the benefit of parti-
tioning across all attributes in the dataset. This means that same
selectivity predicates on any two attributes X and Y should have
similar speed-ups, compared to scanning the entire dataset. To
achieve this, we distribute the total allocation equally among all
attributes. Each attribute gets an allocation of b1/ |A | , where |A|
is the number of attributes and b is the number of buckets. For
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Algorithm 1: CreateTree
Input : Int datasetSize, Int maxPartitionSize, Float[] allocation, Tuple[]

initSample
1 Tree tree;
2 numBuckets← ⌊datasetSize/maxPar tit ionSize ⌋;
3 treeDepth← loд2(numBuckets);
4 Queue nodeQueue← {(tree.root, treeDepth, initSample)};
5 while nodeQueue.size > 0 do
6 node,depth,sample← nodeQueue.pollFirst();
7 if depth > 0 then
8 node.attr← leastAllocated(allocation);
9 node.value← findMedian(sample,node.attr);

10 lS, rS← splitSample(node.attr, node.value);
11 node.left← CreateNode();
12 node.right← CreateNode();
13 allocation[node.attr] -= 2.0/2maxDepth - depth ;
14 depth -=1;
15 nodeQueue.add((node.left, depth, lS));
16 nodeQueue.add((node.right, depth, rS));
17 else
18 node← newBucket ();

instance, if there are 8 buckets, and 3 attributes, the allocation (av-
erage fanout) per attribute is 81/3 = 2. In case of prior workload
information, users can provide relative weights of the attributes
and the attribute allocation will be distributed proportional to these
weights.

The intuition is then to compute the maximum per-attribute allo-
cation, and then place attributes into the tree so as to approximate
this ideal allocation.

3.3 Handling Skew and Correlation
Real world datasets are often skewed, and have attributes that are
correlated (e.g., state and zip code). As a result, if we uniformly
partition the domain range, some branches of the partitioning tree
could have much more data than others resulting in unbalanced
final partitions.Wewould then lose the benefit of partitioning due to
either very small or very large partitions. To illustrate, consider two
partitionings to partition a skewed dataset D1 = {1, 1, 1, 2, 2, 2, 3, 4,
5, 6, 7, 8} into four partitions, one based on the domain range and
the other on the median value:

Pdomain (D1 ) = [{1, 1, 1, 2, 2, 2}, {3, 4}, {5, 6}, {7, 8}]

Pmedian (D1 ) = [{1, 1, 1}, {2, 2, 2}, {3, 4, 5}, {6, 7, 8}]

We observe that Pdomain (D1) is clearly unbalanced whereas
Pmedian (D1) produces balanced partitions.

Amoeba uses this idea to avoid imbalance in the partitioning
tree. We do a breadth-first traversal while constructing the tree. At
each node, we assign the median of the data arriving at the node on
the chosen attribute as the pivot. We split the data on the pivot and
use it to assign (attribute,pivot) for the left and right child nodes
later. Using median from the data as pivot ensures that child nodes
get equal portions of data even when there is skew and correlation.
In order to find the median efficiently, we use a random sample of
the data and find median at each node using the sample. We refer
to Section 5 for more details on implementation.

3.4 Upfront Partitioning Algorithm
We now describe our upfront partitioning algorithm which is used
to generate the partitioning tree. Algorithm 1 shows the pseudocode.
The function takes in the dataset size, the maximum partition size,
the allocation per attribute, and, a sample of the data, to produce
the partitioning tree. It first calculates the depth of the tree to
be created from the partition size and dataset size (Line 3). The
algorithm initializes the queue with the root node of the tree (Line
4) and starts a breadth-first traversal to assign an attribute to every
node. The attribute to be assigned at a given node is given by the
function leastAllocated, which returns the attribute which has
the highest allocation remaining. If two or more attributes have the
same highest allocation remaining, we randomly choose among
the ones that have occurred the least number of times in the path
from the node to the root. findMedian returns the median of the
attribute assigned to this node. This is done by finding themedian in
the sampled data which comes to this branch. The algorithm starts
with an allocation of 2 for the root node, since we are partitioning
the entire dataset into two partitions. Each time we go to the left or
the right subtree, we reduce the data we operate on by half. Once
an attribute is assigned to a node, we subtract from the overall
allocation of the attribute (Line 13). The algorithm creates a leaf-
level bucket in case we reach the maximum depth (Line 18).

3.5 Comparison with K-d Tree
We analyze our partitioning tree in comparison to k-d trees. Specif-
ically, we implemented a k-d tree which partitions on attributes in
a round robin fashion, one attribute at a time, until the partition
size falls below the minimum size. This emulates the standard way
of performing data placement in a conventional k-d tree [7]. In
contrast, our upfront partitioning algorithm places the attributes
such that all attributes have similar partitioning benefits.

Table 2

Dataset size Scale factor k-d Tree Robust Tree

0.73 1 2.1499354 1.500617157
7.32 10 1.333333333 0.452212494

14.65 20 1.171080088 0.322857027
36.62 50 0.910840068 0.168352831
73.24 100 0.8 0.112996582

732.42 1000 0.41281255 0.039580122
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Figure 4: Comparison with k-d Tree on TPC-H lineitem

Figure 4(a) shows the allocation for each attribute of TPC-H
lineitem. We can see that the k-d tree has higher allocation for the
first seven attributes, however the remaining nine attributes are
not partitioned at all. Robust tree, on the other hand, distributes
the allocation more evenly across all attributes. Figure 4(b) shows
the coefficient of variation in allocation over different TPC-H scale
factors. Our approach has much lower variation than k-d tree and
it drops sharply with data size. Thus, larger datasets get more
similar data skipping benefits on all attributes. We also compared
the algorithm runtime of our approach with k-d tree. Similar to k-d
tree, our approach generates the partitioning tree in a few seconds.

3.6 Heterogenous Replication
Distributed storage systems replicate data for fault-tolerance, e.g.,
3x replication in HDFS. Such replication mechanisms first partition
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the dataset into blocks and then replicate each block multiple times.
Instead, we can first replicate the entire dataset and then partition
each replica using a different partitioning tree.

𝐶

𝐴 𝐵

	
  𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒

𝐷 𝐸 𝐹

Figure 5: Heterogenous Replication.

For example, attributes {A,C,D} and {B,E, F } for the two replicas
as in Figure 5. While the system is still fault-tolerant (because it has
the same degree of replication), recovery becomes slower because
we need to read several or all replica blocks in case of a block failure.
Essentially, we sacrifice fast recovery time for improved ad-hoc
query performance.

We know from Section 3.1 that the number of attributes accom-
modated in the tree is a = 1

c · ⌊loдn
D
P ⌋. Having r replicas allows us

to have a ∗ r number of attributes, with a attributes per replica or
increase the c for each attribute. Both these lead to improved query
performance due to greater partition pruning. There are interesting
open questions here, such as how to partition the attributes across
replicas and how to move them later, which we plan to explore as
future work.

4 ADAPTIVE REPARTITIONING
Upfront data partitioning allows an analyst to quickly get started
with her ad-hoc queries. However, she would want the partitioning
to also adapt as her analysis progresses, e.g., drilling downweb click
data into successively smaller age groups, to provide even better
query performance. Amoeba provides an adaptive query executor
to achieve this.

When a query is submitted: (1) the optimizer explores alternative
partitioning trees to find the best one and decides whether repar-
titioning is worthwhile, and (2) the plan executor runs the chosen
plan. The optimized plan only accesses data which is to be read by
input queries, i.e., we do not access data that is not read by queries
during repartitioning. This has two benefits: (i) we never repartition
data that is not touched by any query, and (ii) query processing and
repartitioning share scans reducing the cost of repartitioning.

In the rest of this section, we describe the optimizer and defer
discussion about the plan executor to Section 5.2. In detail, we first
discuss our workload monitor and the cost model used. We, then,
introduce three basic transformations used to transform a given
partitioning tree. Next, we describe a bottom-up algorithm to con-
sider all possible alternatives generated from the transformation
rules for inserting a single predicate. Last, we discuss how to handle
multi-predicate queries. It is worth noting that the entire optimiza-
tion process is transparent to users, i.e., users do not have to worry
about making repartitioning decisions and their queries remain
unchanged with the new access methods.

4.1 Workload Monitor and Cost Model
Amoeba maintains a history of the queries seen by the system,
called the query window (W ). To exclude older queries that are
stale and not representative of the queries to be seen, we restrict the
window to contain only queries that happened in the pastX hours2.
For each query q in the query sequence, the cost of processing q
using partitioning tree T is given as:

Cost(T , q ) =
∑

b∈lookup(T ,q )
nb

where lookup(T ,q) returns the set of relevant buckets for query
q in T and nb is the number of tuples in bucket b. The cost of the
query window is the sum of the cost of individual queries. For a
query being executed, the optimizer might want to transform the
partitioning tree to a new partitioning tree T ′ resulting in a set of
buckets B ⊂ lookup (T ,q) being repartitioned. The benefit of this
transformation is:

Benefit(T ′) =
∑
q∈W

Cost (T , q ) −
∑
q∈W

Cost (T ′, q )

and the added cost of repartitioning is given as:

RepartitioningCost(T , q ) = c
∑
b∈B

nb

where c is the write-multiplier i.e., how expensive writes are com-
pared to a read. The value of c is obtained empirically by mod-
eling the increased query runtime due to repartitioning. For our
evaluation setup, we got c = 4. Repartitioning is expensive, how-
ever it only happens when the resulting decrease in the cost of
the query window (benefit) is greater than the repartitioning cost.
This check prevents constant re-paritioning due to a random query
sequence and bounds the worst case impact. To illustrate, con-
sider a single node in the tree and a query sequence of the form
σA<2,σB<2,σA<2,σB<2.... In this case, we do not constantly repar-
tition the data. After doing it once, say onA, the total cost goes down
and hence the repartitioning on B would not happen as Benefit <
RepartitioningCost.

4.2 Partitioning Tree Transformations
We now describe a set of transformation rules to explore the space
of possible plans when repartitioning the data. For now, we restrict
ourselves to a query with a single predicate of the form A ≤ p,
denoted as Ap . Later in Section 4.4, we discuss how to handle other
predicate forms and multiple predicates.

Our approach is to consider partitioning transformations that
are local, i.e., that do not involve rewriting the entire tree. These
local transformations are cheaper and amortizes the repartitioning
effort over several queries. Amoeba considers the following three
basic partitioning transformations:
(1) Swap is the primary data transformation in Amoeba. It replaces
an existing node in the partitioning with the incoming query pred-
icate Ap . As we repartition only the accessed data, we consider
swapping only those nodes whose left and right children are fully
accessed by the incoming query. Applying swap on an existing node
involves reading both sub-branches, and restructuring all partitions
beneath the left subtree to contain data satisfying Ap and the right
2X is a parameter in adaptive query executor and it determines how quickly the system
reacts to workload changes. We used X = 4 for our experiments.
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Transformation Notation Cost (C) Benefit (B)
Swap Pswap (n, n′)

∑
b∈Tn c · nb

∑k
i−0[Cost(Tn, qi ) − Cost(Tn′, qi )]

Pushup Ppushup (n, nleft, nright) C (P (nleft)) +C (P (nright)) B (P (nleft)) + B (P (nright))
Rotate Protate (p, p′) C (P (nleft|right)) , for p’ on nleft|right B (P (nleft|right)) , for p’ on nleft|right
None Pnone (n) C (P (nleft)) +C (P (nright)) B (P (nleft)) + B (P (nright))

Table 1: The cost and benefit estimates for different partitioning tree transformations.

subtree to contain data that does not satisfy Ap . Swaps can hap-
pen between different attributes (Figure 6(a)), in which case both
branches are completely rewritten in the new tree. Swaps can also
happen between two predicates of the same attribute (Figure 6(b)),
in which case the data moves from one branch to the other. For
example, in the Figure 6(b), if node Ap′ is A10 and predicate Ap is
A ≤ 5, then data moves from the left branch to the right branch,
i.e., the left branch is completely rewritten while the right branch
just has new data appended.
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Figure 6: Node swap in the partitioning tree.

Swaps serve the dual purpose of un-partitioning an existing
(less accessed) attribute while refining on another (more accessed)
attribute. As both the swap attributes as well as their predicates
are driven by the incoming queries, they reduce the access times
for the incoming query predicates. Finally, note that it is cheaper
to apply swaps at lower levels in the partitioning tree because less
data is rewritten. Applying them at higher levels of the tree results
in a much higher cost.
(2) Pushup has as goal of pushing a predicate as high up the tree
as possible. This can be done when both the left and the right
child of a node contain the incoming predicate, as a result of a
previous swap, as shown in Figure 7. This is a logical partitioning
tree transformation, i.e., it only involves rearranging the internal
nodes without any modification of the contents of leaf nodes3.
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Figure 7: Node pushdown in partitioning tree.

We check for a pushup transformation every time we perform a
swap transformation. The idea is to move important predicates
(ones that have recently or frequently appeared in the query se-
quence) progressively up the partitioning tree, from the leaves
right up to the root. This makes important predicates less likely to
be swapped immediately, because swapping a node higher in the
partitioning tree is much more expensive. Another advantage of
pushup is that it causes a churn of the attributes assigned to higher
nodes in the upfront partitioning. When such a dormant node is
pushed down, subsequent predicates can swap them in an incre-
mental fashion, affecting fewer branches. Overall, node pushup
allows Amoeba to naturally cause less important attributes to be
repartitioned more frequently, thereby striking a balance between
3In this case, the swap must have happened in one of the child subtrees.

adaptivity and robustness. Note that if possible, a pushup always
happens as there is no cost associated with doing it.
(3) Rotate transformation rearranges two predicates on the same
attribute such that more important (recently accessed or frequently
appearing in the query sequence) predicate appears higher up in the
partitioning tree. Figure 8 shows a rotate transformation involving
predicates p and p′ on attribute A. The goal here is to churn the
partitioning tree such that predicates on less important attributes
are more likely to be replaced first. Similar to the pushup transfor-
mation, rotate is a logical transformation, i.e., it only rearranges
the internal nodes of the partitioning tree and always happens if
possible.
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Figure 8: Node rotation in partitioning tree.

Discussion These three partitioning tree transformations can be
further combined to capture a fairly general set of repartitioning
scenarios. Figure 9 shows an example. Starting from an initial par-
titioning tree, we first swap nodes D4 with incoming predicate A2
at the lower level. Then, we pushup A2 one level above and finally
rotate with nodes A5 and C3. In the process, we end up repartition-
ing only half the leaves. As we show later in evaluation, in larger
trees, repartitioning mostly happens on small fractions of the data
modifying a few subtrees locally. Swapping nodes based on incom-
ing query predicates may introduce skew i.e., some leaves having
more tuples compared to others. This is not a problem as our cost
model ensures that the skew is actually beneficial if it arises. For
example, if we have a node A0.5 and many queries access A ≤ 0.25,
where A is uniformly distributed (0, 1), it is beneficial to replace
A0.5 with A0.25 in the tree even though it introduces skew. In the
next section, we describe how we generate alternate partitioning
trees using these transformations.

4.3 Divide-And-Conquer Approach
Given a query with predicate Ap and a partitioning tree T , there
are many different combinations of transformations that need to be
considered. We propose a divide-and-conquer approach to explore
the space of all alternate repartitioning trees generated by applying
the transformation rules. Observe that the data access costs over a
subtree Tn , rooted at node n, could be broken down into the access
costs over its subtrees, i.e.,

Cost(Tn, qi ) = Cost(Tnle f t , qi ) + Cost(Tnr iдht , qi )

where, Tnle f t and Tnr iдht are subtrees rooted respectively at the
left and the right child of n. Thus, finding the best partitioning tree
can be broken down into recursively finding the best left and right
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Figure 9: Introducing predicate A2 into the partitioning tree.

Algorithm 2: getSubtreePlan
Input :Node node, Predicate pred

1 if isLeaf(node) then
2 return Pnone (node );
3 else
4 if isLeftAccessed(node) then
5 leftPlan← getSubtreePlan(node.lChild, pred);

6 if isRightAccessed(node) then
7 rightPlan← getSubtreePlan(node.rChild, pred)

/* consider swap */

8 if leftPlan.fullyAccessed and rightPlan.fullyAccessed then
9 currentCost←

∑
i Cost(node,qi );

10 whatIfNode← clone(node);
11 whatIfNode.predicate← newPred;
12 swapNode(node, whatIfNode);
13 newCost←

∑
i Cost(whatIfNode,qi );

14 benefit = currentCost - newCost;
15 if benefit > 0 then
16 updatePlanIfBetter(node, Pswap (node,whatIfNode));

/* consider pushup */

17 if leftPlan.ptop and rightPlan.ptop then
18 updatePlanIfBetter(node, Ppushup (node, node.lChild, node.rChild));

/* consider rotate */

19 if node.attribute == predicate.attribute then
20 if leftPlan.ptop then
21 updatePlanIfBetter(node, Protate (node, node.lChild));

22 if rightPlan.ptop then
23 updatePlanIfBetter(node, Protate (node, node.rChild));

/* consider doing nothing */

24 updatePlanIfBetter(node, Pnone (node));
25 return node.plan;

subtrees at each level, and considering parent node transformations
only on top of the best child subtrees. For each transformation,
we consider the benefit and cost of that transformation and pick
the one which has the best benefit-to-cost ratio. Table 1 shows the
cost and benefit estimates for the different transformations. For the
swap transformation, denoted as Pswap (n,n′), we recalculate the
query costs. However, pushup and rotate transformations, denoted
as Pswap (n,n′) and Ppushup (n,nleft,nright) respectively, inherit the
costs from children subtrees. We also consider applying none of
the transformations at a given node, denoted as Pnone (n). This
approach helps to significantly reduce the candidate set of modified
partitioning trees.

Algorithm 2 shows our divide-and-conquer approach to find the
best repartitioning plan. The algorithm recursively finds the best
plan for each subtree, until we reach the leaf. If leaf, we return a
do-nothing plan (Lines 1–2). If not, we first check if the left subtree
is accessed, if yes we recursively call getSubtreePlan to find the
best plan for the left subtree (Lines 4–5). Similarly for the right
subtree (Lines 6–7). The output plan contains the transformation
applied at the node (ptop to indicate ifAp is the root after the plan is

applied; f ullyAccessed to indicate if the entire subtree is accessed,
and ; cost and bene f it calculated using Table 1), and pointers to
the left and right child plan.

Once we have the best plans for the left and right subtrees,
we first consider swap rule (Lines 8–16). Swapping happens only
if both the subtrees are fully accessed. Otherwise, we will need
to access additional data in order to create new partitioning. We
perform a what-if analysis to analyze the plan produced by the
swap transformation. This is done by replacing the current node
with a hypothetical node having the incoming query predicate. We
then recalculate the new bucket counts at the leaf level of this new
tree using the sample. We now estimate the total query cost with
the hypothetical node present. In case the what-if node reduces
the query costs, i.e., it has benefits, we update the transformation
plan of the current node. The update method checks whether the
benefit-cost ratio of the new plan is greater than that of the best
plan so-far. If so, we update the best plan.

Similarly, we apply the pushup and rotate transformation if
possible (Lines 17–23). Both transformations are logical; hence,
we simply check whether the pushdown results in better benefit-
cost ratio. Finally, we check whether no transformation is needed,
i.e., we simply inherit the transformations of the child nodes (Line
24). The algorithm returns the best plan (Line 25). The algorithm
has a runtime complexity of O (QNloдN ) where N is the number
of nodes in the tree and Q is the number of queries in the query
window.

4.4 Handling Multiple Predicates
So far we assumed that a predicate is always of the form A ≤ p. It
gets inserted in the tree as Ap and on insertion, only the leaf nodes
on the left side of the node are accessed. A > p is also inserted as
Ap with the right side of the node being accessed. For A ≥ p and
A < p, let p′ be p − δ where δ is the smallest change for p’s data
type. We insert Ap′ into the tree. A = p is treated as combination
of A ≤ p and A > p′.

Let us now consider queries with multiple predicates. Consider
a simple query with two predicates Ap and Ap2. The brute force
approach is to consider choosing a set of accessed non-terminal
nodes to be replaced by Ap and then for every such choice, choose
of set of remaining nodes to be replaced by Ap2. Thus, the num-
ber of choices grows exponentially with the number of predicates.
Amoeba uses a greedy approach to work around this exponential
complexity. For each predicate in the query, we try to insert the
predicate into the tree. We find the best plan for that predicate by
calling дetSubtreePlan(root ,pi ) for the ith predicate. We take the
best among the best plans obtained for different predicates and
remove the corresponding predicate from the predicate set. We
then try to insert the remaining predicates into the best plan ob-
tained so far. The algorithm stops when either all predicates have
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Algorithm 3: getBestPlan
Input : Tree tree, Predicate[] predicates

1 while predicates , ϕ do
2 prevPlan← tree.plan;
3 foreach p in predicates do
4 Plan newPlan← getSubtreePlan(tree.root, p);
5 updatePlan(tree.root, newPlan, p);

6 if tree.plan , prevPlan then
7 remove from predicates the newly inserted predicate;
8 else
9 break;

10 if tree.plan.benefit > tree.plan.cost then
11 return tree.plan;
12 else
13 return null;

been inserted or when the tree stops changing. Doing this adds a
multiplicative complexity of O ( |P |2) where P is the set of query
predicates.

The best plan obtained is applied on the current partitioning
tree and a new one is generated only if the plan’s benefit is greater
than the cost. Here, plan’s benefit is the total reduction in the cost
of the query window. If benefit is less than cost, we ignore it; no
repartitioning happens and we just filter out the partitions based on
the current partitioning tree. We do this check at the end and not
after every predicate insertion as a single predicate insertion may
not generate enough benefit, however subsequent insertions may
generate enough to pay for the cost of repartitioning. Algorithm 3
shows the pseudocode.

5 AMOEBA USING SPARK AND HDFS
We implemented Amoeba on top of HDFS, with Spark for query pro-
cessing. Still, one can easily implement our ideas on any block-based
distributed system. Also, as we show with SparkSQL, integrating
heterogeneous partitioning into an existing system is straightfor-
ward as most changes are below the storage layer. The Amoeba
storage system has around 8, 000 lines of code and comprises of
two modules: (i) a data loader module; and (ii) a query processor
module.

5.1 Data Loader
This module bulk loads raw input files into HDFS, partitioned across
all attributes. It first builds an initial partitioning tree and then
creates the data blocks accordingly.
Tree Construction. When constructing the partitioning tree on a
cluster of machines, we collect the sample in parallel using block
sampling. Later, we combine the samples (via HDFS) and pass the
sampled records and attribute allocations to the tree builder (Al-
gorithm 3) on a single machine to produce a single partitioning
tree across the entire dataset. The index is serialized and stored
as a file on HDFS. By default, we use uniform allocation for the
attributes. However, the user may use prior workload knowledge
to set a custom allocation and get better performance (see Section
6.4).
Data Blocking. The second phase takes the partitioning tree and
the input files as input and creates the data blocks. During this

phase, in parallel on each machine, we scan the input files. For each
tuple, we use the partitioning tree to find the leaf node it lands in.
We use a buffered stream to collect the tuples belonging to each
partition (leaf node) separately and buffer them before flushing to
the partition in the underlying file system (e.g. HDFS). As multiple
machines might write to the same partition, we employ partition-
level distributed exclusive locks (via Zookeeper [3]) to synchronize
writes. Our current implementation creates a different HDFS file for
each partition in the dataset. With the current main memory and
CPU capacities, having a file per partition (with partitions in the or-
der of ten thousand) does not lead to any observable slowdown [14].
However, future work could also integrate Amoeba deeply within
HDFS to generate a single file with each block holding one partition.
Bulk Updates. Updates can change the median values of the ex-
isting partitioning tree and require us to reshuffle the data entirely.
To avoid this, Amoeba creates a new partitioning tree for each
new bulk update. The new partitioning tree uses the same attribute
allocation; as it has the same schema, however, we recompute the
medians based on the data distribution in the update. At query
time, the Amoeba query executor looks up all partitioning trees
on a table in order to compute the relevant data blocks. Streaming
appends could be handled using techniques from columns stores
where a small "write optimized" buffer stores the incoming records,
which are periodically inserted as a bulk update [10, 30]. This cre-
ates a date-partitioned set of datasets, each of which is internally
partitioned using its partitioning tree.

5.2 Query Processor
Amoeba can be a standalone storage system or a data source for
systems like SparkSQL. Consider a simple query:

spark.read.amoeba('employee')
.where('age > 30').count()

Internally SparkSQL does the predicate pushdown and passes to
Amoeba a predicated scan query < employee, (aдe > 30) >. There
are two main parts involved in running this query: (i) creating an
execution plan which may involve repartitioning some or all the
of the data that is being accessed by the query, and (ii) actually
executing the plan.
Optimizer. The optimizer is responsible for generating an execu-
tion plan for the given query. It reads the current tree file from
HDFS and uses Algorithm 3 to check if it is feasible to improve the
current partitioning tree. Note that while creating the plan, we also
end up filtering out partitions that do not match any of the query
predicates. For example, if there is a node A5 in the tree and one of
the predicates in the query isA ≤ 4, then we don’t have to scan any
of the partitions in right subtree of the node. If the plan changes
the tree, we write out the new partitioning tree to HDFS. From the
plan, we now get two set of buckets: (i) buckets that will just be
scanned, and (ii) buckets that will be repartitioned to generate a
new set of buckets.
Plan Executor. Amoeba uses Spark for executing queries. We
construct a Spark job from the plan returned by the optimizer. We
split each of the two sets of buckets into smaller sets called tasks.
A task contains a set of buckets such that the sum of the sizes of
the buckets is not more than 4GB. Each task reads the blocks from
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HDFS in bulk and iterates over the tuples in main-memory. Tasks
created from set 1 run with a scan iterator which simply reads a
tuple at a time from the buckets and returns the tuple if it matches
the predicates in the query. Tasks created from set 2 run with a
distributed repartitioning iterator. The iterator reads the tree from
HDFS. For each tuple, the iterator looks up in the new partitioning
tree to find its new partition id in addition to checking if it matches
the query predicates. It then re-clusters the data in main-memory
according to the new partitioning tree. Once the buffers are filled,
the repartitioner flushes the new partitions into physical files on
HDFS.

Amoeba uses partition-level distributed exclusive locks (via
Zookeeper) to ensure consistency. First, multiple queries can exe-
cute concurrently andmight end up repartitioning the same buckets.
To prevent this, before a plan involving repartitioning executes, it
acquires exclusive locks on all the buckets it wants to repartition.
If it fails to get the locks before timeout, the plan just scans both
sets of buckets. This scheme allows multiple queries to repartition
data simultaneously if they are modifying different subtrees. Af-
ter repartitioning, the index file is updated and the old buckets
are garbage collected at a later point when no there no queries
using them. Second, when the optimizer decides to repartition a
large subtree, the repartitioning work may end up being distributed
across several tasks. To ensure writes are done atomically, workers
use locks on the new partitions being created to coordinate while
flushing data to them. As a result, each partition resides in a single
file across the cluster.

Tasks are executed independently by the Spark job manager
across all machines and the result is exposed to users as a Spark
RDD. Users can use these RDDs to do more analysis using the
standard Spark APIs, e.g., run an aggregation.

6 EXPERIMENTS
We evaluate the system on the following four metrics: Upfront
overhead, i.e., the initial partitioning overhead; First query runtime,
i.e., the initial query performance; Break-even point i.e., number of
queries to recover the cost of upfront partitioning, and; Total gain,
i.e., the ratio of the total runtime of all queries using the system.

We divide the experiments into five sections: (i) we examine the
benefits and overheads of upfront data partitioning, (ii) we study
the repartitioning efficiency, (iii) we show how to improve query
performance by using query workload information, (iv) we validate
Amoeba using a real world workload from an IoT startup and (v) we
present detailed micro benchmarks.

6.1 Experimental Setup.
Our testbed consists of a cluster of 10 nodes. Each node has 16 2.07
GHz Xeon cores, running on Ubuntu 12.04, 128 GB main-memory,
and 11 TB of disk storage. The Amoeba storage system runs on
top of Hadoop 2.6.0 and uses Zookeeper 3.4.6 for synchronization.
We run queries using Spark 1.6.1, with Spark programs running
on Java 7. All experiments are run with cold caches. We use the
following two datasets in our experiments:
TPC-H is a ad-hoc decision benchmark and reflective of ad-hoc
workloads generated from templates in real-world application. We

use the TPC-H benchmark with scale factor of 200. To focus on
the effects of reduced table scan, we denormalize all the tables
against the lineitem table, which results in a single table of roughly
1.2 billion rows and 1.4TB in size. We evaluate all TPC-H query
templates that have selection predicates on lineitem table, namely
(q3,q5,q6,q8,q12,q14,q19)4. The FROM clauses in these templates
were changed to use the denormalized table. To remove the runtime
difference across queries due to different aggregates being com-
puted, we replace the select clause with COUNT (∗). This choice
of workload is common to other papers that evaluate partitioning
techniques in distributed databases [31].
IoT Dataset. We obtained data from a Boston-based company that
captures analytics regarding a user’s driving trips. Each tuple in
the dataset represents a trip taken by the user, with the start time,
end time, and a number of statistics associated with the journey
regarding various attributes of the driver’s speed and driving style.
The data consists of a single large fact table with 148 columns. To
protect user’s privacy, we used statistics provided by the company
regarding data distributions to generate a synthetic version of the
data according to the actual schema. The total size of the data
is 705GB. We also obtained a trace of ad-hoc analytics queries
from the company (these queries were generated by data analysts
performing one-off exploratory queries on the data). This trace
consists of 103 queries, run between 04/19/2015 and 04/21/2015, on
the trip data. The queries can be modelled as 5 sets of query patterns
with a sequential shift from one query pattern to another. There
are instants where two neighboring query patterns are active at the
same time. Each query pattern looks at a time window and filters
on a set of attributes. Some of the predicates in a query pattern are
static (for example: predicate on company_id) while others change
(e.g. predicate on trip_start, phone_model, etc.).

6.2 Upfront Partitioning Performance
We start studying the impact of doing upfront partitioning. We
analyze two aspects: the added overhead as a result of doing upfront
partitioning (i.e., upfront overhead) and the benefit of doing upfront
data partitioning (i.e., time to first query).
Data Loading Overhead. As mentioned earlier, loading data into
the Amoeba storage manager is a three step process. The loader
does block-sampling in parallel across all the nodes to generate a
sample of the data. Then, on a single machine the partitioning tree
algorithm is used to generate a partitioning tree. Finally, the data
is partitioned and stored in HDFS 3-way replicated. To look at the
overhead involved, we compare the data upload time in Amoeba
against the standard data upload time in HDFS using the command
line interface (CLI). In this experiment we use the denormalized
TPC-H data. The data is uniformly distributed across all the ma-
chines to begin with, each machine has 1/10th of the data. The
data is loaded in parallel from all the machines in both methods.
For a fair comparison, Amoeba preserves the same format (row,
uncompressed) and layout (text) as in standard HDFS, i.e., it only
differs in how the data is partitioned.

4Our focus in this work is data skipping and therefore we only consider selection
predicates. In [22], we show how this approach applies to join predicates.
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Figure 10: Upfront query runtimes of the TPC-H queries

The total upload time for Amoeba is 1.38 times that of HDFS
CLI. The breakdown of the total time shows that the sample gener-
ation step takes 122s. The partitioning tree creation step takes 14s.
Writing out the partitions takes 2890s which is only slightly higher
than the total upload time using the HDFS CLI which takes 2190s.
This is because the step is IO-bound and the amount of data being
uploaded by both methods into HDFS is the same. The difference
is due to the Zookeeper synchronization overhead and the cost of
doing multiple appends to create the partitions. Finally, the over-
head is similar to other workload-specific data preparation, such as
indexing and co-partitioning [13, 27]. Amoeba can also read data
directly from HDFS. We observed an additional 5% slowdown when
data is read from HDFS.
Ad-hoc Query Processing. Given that Amoeba distributes the
partitioning effort over all attributes, ad-hoc queries are expected
to show a benefit right from the beginning. To illustrate this, we
ran the 8 TPC-H queries selected one at a time independently. We
compare the query runtime of each query on Amoeba against the
following alternatives: full scan, which uses Amoeba but it does
not prune the partitions, instead it reads all partitions and applies
the query predicates; Spark SQL, which uses Spark SQL to run the
entire query and hence it ends up doing a full scan, and; k-d tree,
which partitions attributes in a round robin fashion, one attribute
at a time, until the partition size falls below the maximum partition
size. This emulates the standard way of performing data placement
in a conventional k-d tree [7].

Figure 10 shows the results. Comparing full scan and Spark
SQL, we observe that the latter does slightly better. This is because
(i) the raw dataset is partitioned into 200 files while Amoeba stores
the dataset as a collection of 8,192 files, and (ii) full scan ends up
reading the index file too. Still, together this leads to only around
7% overhead. So, even though we are reading more partitions and
an extra index file, our implementation is still competitive. Now,
comparing full scan and Amoeba shows that the upfront par-
titioning indeed helps and all the queries have improved query
performance. Overall, we get 44.8% improvement over full scan due
to the upfront partitioning.

Both k-d tree and Amoeba’s partitioning tree have 13 lev-
els, which results into 8, 192 blocks. K-d tree partitions one at-
tribute at a time in a round-robin fashion which results in only
13 attributes of the 45 attributes in the denormalized TPC-H
schema being accommodated in the k-d tree. It ends up doing
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Figure 11: Running the queries on the TPC-H dataset

full scans in case the attributes queried were not used in the k-
d tree. In this instantiation, k-d tree has 4 attributes which fil-
ter blocks: (c_mktseдment , l_quantity, l_returnf laд, l_shipmode )
and the other 9 attributes don’t occur in any query. As a result,
(q5,q8,q14) end up being full scans while (q6,q12,q19) end up be-
ing better than Amoeba as k-d tree is partitioned on the attributes
needed by those queries. Amoeba uses heterogeneous branching
in the partitioning tree, which results in partitioning on many
attributes partially. As TPC-H queries have multiple predicates,
each predicate ends up independently filtering out a fraction of the
blocks. Thus, every query shows improved performance in Amoeba
with lesser variance in runtime across queries. On average, Amoeba
does 20% better than using the k-d tree based partitioning.

Thus, Amoeba not only provides improved time to first query
with low upfront overhead, but also provides improvements across
several attributes.

6.3 Adaptive Query Executor Performance
To show the effectiveness of the adaptive query executor, we ran
a workload of 200 queries generated by random initialization of
the 8 query templates listed in Section 6.1 on the TPC-H dataset.
We compare the end-to-end query runtimes using Amoeba against
the following alternatives: full scan, which uses Amoeba but
without partition pruning; range, which is a workload-oblivious
partitioning on o_orderdate, creating one partition per date. The par-
titioning tree thus created has all nodes with o_orderdate attribute
and results in roughly 2300 partitions, and; range2, which is the
workload-based multi-dimensional partitioning scheme of Sun et
al. [31], created based on the frequently queried columns in the
workload. The scheme range partitions the data on o_orderdate (64
partitions), r_name (4 partitions), c_mktsegment (4 partitions), and
quantity (8 partitions). This results in 8, 192 partitions, the same as
the number of partitions generated by the upfront partitioner in
Amoeba.

Figure 11 shows the query runtimes using the different ap-
proaches. In full scan, all the queries take approximately the
same amount of time. In range, several queries end up performing
full scans as 3 of the query templates (q6,q12 and q14) do not filter
on o_orderdate . In range2, only queries from query template q12
end up being full scans and all other queries show improved query
performance. Amoeba starts out with no workload information.
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Figure 12: Query runtimes using the custom initialization

As a result, index re-organizations are initially more disruptive.
However over time the re-organizations become less costly. In the
last 20 queries, the query executor repartitions parts of the data 6
times but there are no large spikes, as only a small fraction of the
data accessed is being re-organized. The repartitioning overhead
makes only 2 queries take more time than doing a full scan. In
terms of the total workload runtime, range improves performance
by 1.88x , range2 improves it by 3.48x and Amoeba improves it by
3.84x compared to full scan. More importantly, Amoeba started
with no workload information while range2 had prior information
about the frequently accessed columns.

Thus, Amoeba’s partitioning tree improves as the dataset is
queried and eventually outperforms the workload-aware scheme
range2 due to its adaptive partitioning approach.

6.4 Better Initialization
As shown in the previous subsection, Amoeba outperforms range2,
but only by 0.36x . This is because range2 is already partitioned on
the frequently accessed attributes. In this section, we give the up-
front partitioner as much information as range2 to begin with and
compare against range2 and default Amoeba. Specifically, instead
of starting with uniform allocation for all attributes, we set the
following custom allocation: (o_orderdate, r_name, c_mktsegment,
quantity) = (12,4,4,6). This is identical to the allocations calculated
on range2.

Figure 12 shows the query runtimes for the same set of queries
used in the previous section. In the figure, better init is Amoeba
with the custom allocation and default is the same as Amoeba in
Figure 11. Amoeba with this custom allocation improves the end-to-
end workload runtime by 6.67x compared to full scan versus 3.48x
achieved using range2 and 3.84x achieved using uniform allocation.
As the partitioning tree created by upfront partitioner already con-
tains the frequently accessed attributes, fewer repartitionings are
triggered, leading to much better performance. Note that the spike
in the beginning with better init is larger than with default. In
default the data is partially partitioned on all the attributes while
in better init it contains only 4 attributes. In this instance, the
optimizer decides to do partial partitionings on l_recieptdate and
l_shipmode, both of which aren’t in the tree resulting in close to a
full repartitioning. New attribute insertions are less expensive if
the data is already partially partitioned on the attribute. In the end,
after running the workload, the tree that started with 4 different
attributes ends up having all the 15 attributes being queried across
the 8 query templates.
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Figure 13: Query runtimes on the IoT dataset

The optimal performance is achieved when a partitioning layout
that can filter out all the tuples that don’t match the query predi-
cates. Note that this upper bound may not be achievable due to the
constrain on having a fixed number of blocks. To check how close
default and better init are to the optimal, we measure the aver-
age of the ratio of number of tuples skipped due to the partitioning
tree to the number of tuples that don’t match the query predicates
across the 8 query templates. After running the workload, the ratio
for default is 0.80 while the ratio for better init is 0.90. Amoeba
indeed comes pretty close to the optimal partitioning.

Thus, we see that Amoeba can exploit upfront workload informa-
tion and match (or even outperform) workload-based partitioning.
Amoeba can capture both static workload-based and online adaptive
partitionings.

6.5 Amoeba on a Real Workload
We ran the exact queries from the workload associated with the
IoT dataset (run in the same order as in the trace) on our synthetic
version of the dataset on our testbed. We compare the performance
of queries on Amoeba against: full scan and range, which has
the data partitioned by upload_time (the best performing single-
attribute partitioning).

Figure 13 shows the per-query runtime of the different ap-
proaches. The entire workload took 5.71 hours to run on the
Amoeba storage system, compared to 20.36 hours with full scan
(3.6x improvement) and 10.86 hours with range (1.9x improvement).
range’ s performance being static is an artifact of the synthetic data
generation which distributes the data uniformly across all dates
which may not be the case in the real dataset. In Amoeba, the first
query does only slightly better than full scan, due to large number
of attributes. However, Amoeba quickly adapts the partitioning to
actual attributes and predicates encountered in the workload. Note
that out of 148 columns in the dataset, only 18 attributes are used
in the predicates. Amoeba repartitions the data 17 times in total
and the peak repartitioning cost is 2, 126s, which is three times the
scan cost.

In the query workload, there is a sequential shift from one query
pattern to another with at most 2 patterns active at any given time.
This is in contrast to the TPC-H workload which had 8 query pat-
terns (templates) interleaved. The shift in query pattern is reflected
as spikes in the Amoeba subplot. The reductions in runtime follow-
ing a spike are significant as Amoeba can exploit the presence of



SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA A. Shanbhag et al.

16 32 64
Number of columns

0

10000

20000

30000

Ru
nt

im
e 

(s
)

(a) Dataset size 1TB fixed

0.5TB 1TB 2TB
Dataset Size

0
10000
20000
30000
40000

Ru
nt

im
e 

(s
)

(b) Number of columns 16 fixed

Figure 14: Load time variation

static predicates in the query patterns. Finally, as noted in the in-
troduction, there is no starting partitioning that works well for this
data set, as even after seeing 80% of the workload, the remaining
20% still contained 57% new queries.

Thus, we see that Amoeba is useful for real-world ad-hoc query-
ing workloads, where we need to quickly access different subsets
of data for further analysis.

6.6 Micro Benchmarks
Optimizer Overhead: Every query first goes to the optimizer
which evaluates if the index can be improved. The optimizer run-
time varies from < 1s to 10s depending on the number of choices to
be evaluated. Most of the time is spent in the what-if analysis of the
swap transformation which involves finding median of an attribute
in the sampled data. The optimizer runtime is small compared to
the query runtime, which takes several minutes. So, we did not
attempt to significantly optimize it. However, since each predicate
is evaluated independently, they can also be evaluated in parallel
should optimization time be problematic.
Load Time Scaling: To evaluate the scaling of upfront partitioner,
we consider two settings: 1) varying columns 2) varying data size.
For varying columns we construct a synthetic dataset of 160 billion
random integers and shape it into 16, 32 and, 64 columns. The size
of the dataset is constant at 1.02 TB on disk with only the number
of columns is varying. Figure 14(a) shows the results. The time
is almost a constant as load time is proportional to data size and
types and, independant of the number of columns. For varying
data sizes, we keep the number of columns at 16 and vary the data
sizes as 500GB, 1TB and, 2TB. Figure 14(b) shows the results. The
time increases proportional to the data size. The depth of the tree
increases by 1 each time we double the data size, however we didn’t
notice any impact on performance.
The Worst Case: Amoeba uses an online algorithm. Every time
re-partitioning happens, the system spends effort with the hope
that future queries would benefit from it. To examine the worst
case, we consider two scenarios. First, using the TPC-H data we
constructed a workload of 100 queries where each query has a
range filter on a random attribute with 10% selectivity. In this case,
Amoeba avoids doing any re-partitioning. This is because, in every
tree transformation, some nodes get replaced based on the query
predicates and re-partitioning happens only if the benefit generated
is greater than cost of re-partitioning. When attributes are chosen
randomly, replacing any existing node will increase the cost for
the query using that attribute, making it unlikely to be replaced.
In this case, Amoeba still does 33% better than Spark SQL due to
the upfront partitioning. Second, for the same TPC-H data, we
create one query on a random attribute with 10% selectivity and

run it 5 times, then repeated the same process 3 times resulting
in 20 queries run on 4 different attributes. In each of the 4 cases,
we end up re-partitioning the data and never using it more than
once, which is the worst case. This results in overall 20% slowdown
compared to doing full scans.

7 RELATEDWORK
Several database partitioning techniques have been proposed in the
past including fine-grained partitioning [12], hybrid of fine- and
coarse-grained [28], skew-aware partitioning [26], deep integration
with the optimizer [24], interdependence of difference design deci-
sions [34], and integrating vertical and horizontal partitioning deci-
sions [4]. MAGIC aims at supporting declustering data on multiple
attributes [17]. All these techniques, however, are workload-driven,
and require that a workload is either provided upfront or monitored
and collected over time. Oracle andMySQL support sub-partitioning
to create nested partitions on multiple attributes. IBM DB2 supports
multi-dimensional clustering tables to cluster data along multiple
dimensions and build block-based indices on them [23]. These are
still static and need to be reconfigured every time the workload
changes.

Big data storage systems, such as HDFS, partition datasets based
on size. Developers can later create attribute-based partitioning us-
ing a variety of data processing tools, e.g. Hive [1] and SCOPE [33].
However, such a partitioning is no different than traditional data-
base partitioning as (i) partitioning is a static one time activity,
and (ii) the partitioning keys must be known a-priori and provided
by users. Recently, [31] proposed to create data blocks in HDFS
based on the features extracted from each input tuple. Again, the
features are selected based on a workload and the goal is to cluster
tuples with similar features in the same data block. AQWA looks
at adaptive data partitioning for spatial data (2 dimensions). Their
techniques do not scale to higher dimensions [5]. Apart from sin-
gle table partitioning, Hadoop++ [13] and CoHadoop [16] propose
to co-partition datasets in HDFS to speed-up join queries. These
systems still assume a workload.

Partitioning has also been considered in the context of index-
ing, e.g., partitioning a B+-Tree on primary keys [19]. For multi-
dimensional data, K-d Trees, R-Trees, and Quad-Trees have been
proposed. These index structures are typically used for spatial data
with 2 dimensions. Several other binary search trees have been pro-
posed in the literature, such as splay tree [29]. Recent approaches
layer multidimensional index structures over distributed data in
large clusters. This includes SpatialHadoop [15], MD-HBase [25],
and epiC [32], or adapting the multidimensional index to the work-
load in TrajStore [11]. However, all of these multidimensional index-
ing approaches typically focus on data locality and 2-dimensional
spatial data, whereas our focus is on a balanced sub-division of
multi-dimensional data.

Like Amoeba, cracking [20] is a technique to adapt the layout of
data and indexes as queries arrive. Partial sideways cracking extends
this idea to generate adaptive indexes on multiple columns [21].
Unlike Amoeba, cracking is a technique designed for in-memory
column-stores and so is done as a part of every query in the system.
It does not naturally apply to a distributed setting for two main
reasons. First, the cost of repartitioning in a distributed setting is
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higher than in a main memory system. So, we cannot afford to
repartition data on every access as cracking does. Second, cracking
splits the data on every new predicate it encounters, which can
result in a large number of blocks. However, in a distributed setting,
the number of data blocks that can be created is limited because
blocks must be a certain size to amortize latencies of disk and
network access. As a result, adding a split for a new predicate
involves merging existing partitions and re-splitting them to keep
the number of blocks constant.

8 CONCLUSION
In this paper, we presented Amoeba, a distributed storage sys-
tem based on an adaptive and yet robust data partitioning scheme.
Amoeba allows analysts to get started right away and reap the
benefits of data partitioning without having to come up with a
query workload. The key idea is to build and maintain a carefully
crafted multi-dimension partitioning tree. We described an upfront
partitioning algorithm to spread the benefits of partitioning over all
attributes in a dataset. Subsequently, the partitioning adapts incre-
mentally based on the predicates from the user queries. We showed
a divide and conquer approach to transform the tree based on a
cost model and described how Amoeba can be used with existing
relational data processing frameworks like Spark SQL. Our results
on both real and synthetic workloads show that Amoeba provides
improved up-front query performance significantly, and, can match
and even outperform workload-based range-partitioning schemes.
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