
Microlearner: A fine-grained Learning Optimizer for Big Data
Workloads at Microsoft

Alekh Jindal
Gray Systems Lab

Microsoft
alekh.jindal@microsoft.com

Shi Qiao
Azure Data

Microsoft
shqiao@microsoft.com

Rathijit Sen
Gray Systems Lab

Microsoft
rathijit.sen@microsoft.com

Hiren Patel
Azure Data

Microsoft
hirenp@microsoft.com

Abstract—Big data systems have become increasingly complex
making the job of a query optimizer incredibly difficult. This
is due to more complicated decision making, more complex
query plans seen, and more tedious objective functions in cloud-
based big data workloads. As a result, production cloud query
optimizers are often far from optimal. In this paper, we describe
building a learning query optimizer for big data workloads
at Microsoft. We make four major contributions. First, we
describe the challenges in cloud query optimizers based on our
observations from the big data workloads at Microsoft. Second,
we discuss what makes machine learning an attractive approach
to aid the big data query optimizers in decision making. Third,
we present Microlearner, a practical approach to characterize
large cloud workloads into smaller subsets and build micromodels
over each subset to tame the complexity of big data workloads
And finally, we describe the productization of Microlearner,
using learned cardinality as a concrete example, via performance
results over very large production workloads and illustrating the
various challenges involved in deployment.

I. INTRODUCTION

Query optimization has increasingly become a challenge
in cloud based big data systems. This is due to three main
reasons. First, query optimization has become much more
complex in big data systems with too many decisions to make,
including things like efficient data distribution, data movement,
and resource allocation, e.g., number of containers, size of
containers, etc. Second, big data workloads are getting in-
creasingly more complex, with larger DAG of operators, more
business logic encoded into custom user defined operators, and
the presence of advanced operations such as machine learning,
linear algebra, etc. Third, even the optimization functions have
become more complex in cloud environments where multiple
objectives such as optimizing data pipelines, end to end costs,
resource consumption, and dollar costs are important to cloud
consumers and therefore one or more need to be considered
at the same time. Altogether, query optimization has become
a nightmare in big data systems and current optimizers result
in decisions that are far from optimal.

Interestingly, there is a recent trend of replacing components
of a database system with machine learning models [1], and
even replace the entire query optimizer with a learned one [2],
Indeed, this is a very promising direction for taming the above
complexities in cloud-based big data systems, i.e, instead of
building a general purpose big data system for all possible
workload scenarios, one could train the query optimizer on

the characteristics of the cloud workloads that is seen at
hand. Such a learning optimizer can capture the complex
cloud system behavior into learned models, scale the number
of decisions by simply learning more models, optimize for
complex objectives by employing different training techniques,
and help make specialized decisions for different instances of
workloads. However, training such an optimizer is not trivial
for big data due to the humongous search space and the more
complex decision making, i.e., while approaches over tradi-
tional databases have focused on cardinality estimation [3],
join ordering [4], and plan search [5], there are many more
important decisions to consider in the big data systems.

Motivated by these observations, we look into the
SCOPE [6], [7] query engine that is used for running pro-
duction big data workloads across the whole of Microsoft,
including business units such as Bing, Windows, Office,
Xbox, etc. Instead of making the optimization decisions from
scratch every time, our goal is to learn from the behavior of
past SCOPE workloads in order to improve its decisions in
future queries, i.e., adding a feedback loop that continuously
rectifies and guides the decision making. Luckily, such a
design becomes possible with the availability of massive query
workloads in modern clouds, both due to the popularity of
cloud infrastructures and the rise of serverless query process-
ing capabilities [8]–[10] that have put the onus of workload
optimization on the cloud provider anyways [11]. Adding
workload-awareness into the query optimizer is therefore a
win-win both for the customers as well as the cloud providers.

Thus, in this paper, we present Microlearner, a fine-grained
learning optimizer for big data workloads at Microsoft. We
start by showing a detailed analysis over production workloads
on why query optimization is turning out to be a big pain in
big data (Section II). Then, we argue why machine learning
is a helpful tool for big data given the shared nature of big
data workloads, the changes in cloud workloads over time,
and the current state of optimizer decisions (Section III). We
present a workload characterization-based learning approach
that trains micromodels over different subsets of the workload
and puts them together (Section IV). We describe various
aspects of Microlearner, including scalable model training,
regression validation, model management, in-optimizer scor-
ing, and overall developer and customer experience. Finally,
we describe our journey in productizing the first version of



Microlearner, using learned cardinalities as a concrete sce-
nario and show the significant performance gains achieved in
production (Section V). We conclude by identifying the open
challenges and discussing the lessons learned (Section VI).

II. OPTIMIZING BIG DATA QUERIES

The past decade has seen a tremendous interest in large-
scale data processing across industry. At Microsoft, the typical
scenarios include building business critical pipelines such as
advertiser feedback loop, index builder, and relevance/ranking
algorithms for Bing; analyzing user experience telemetry for
Office, Windows or Xbox; and gathering recommendations for
products like Windows and Xbox. To address these needs, a
first-party big data analytics platform has been developed at
Microsoft, which makes it possible to store data at exabyte
scale [12] and process in a serverless [13] form factor, using
SCOPE [6], [7] as the query processing workhorse. SCOPE
workloads consist of analytics jobs from almost every single
business unit at Microsoft, processing hundreds of thousands
of jobs per days, across hundreds of thousands of machines,
with individual jobs that can consume tens of petabytes of data
(and produce similar volumes of data) by running millions of
tasks in parallel [14]. While much of the focus so far has been
on handling the scale and complexity challenges, increasingly
there is a pressing need to improve the system efficiency
and reduce operational costs in these big data infrastructures.
As a result, there is a renewed focus on query optimization
over big data. Unfortunately, it turns out that optimizing big
data queries is challenging due to several reasons. Below we
describe some of these challenges based on our observations
from one day’s worth of SCOPE query workloads at Microsoft,
consisting of hundreds of thousands of jobs from thousands
of users and hundreds of business units. We believe that the
challenges discussed below are also applicable elsewhere.
Query graph sizes. Figure 1a shows the cumulative dis-
tribution of the size of SCOPE job graphs. We see that
while 40% of the jobs have within 10 operator nodes, the
remaining can have much larger DAGs — 20% having more
than 50 operators, 13% having more than 100 operators,
and 3% having more than 500 operators! Thus, we see that
compared to the traditional databases, big data systems have
to deal with a tail of very large queries, which could also
be business critical. This is because SCOPE users author the
SCOPE scripts by writing a sequence of statements, in a data
flow style, with multiple inputs and outputs that together get
compiled into a single giant DAG. While this makes it easier
for the users to express their business logic, larger DAGs also
make the job of the query optimizer harder, since the plan
search space and the query optimization complexity grows
exponentially with the number of nodes. Furthermore, since
big data queries run in a distributed manner, the optimizer also
needs to determine the data distribution (partitioning, sorting,
etc.) at each point in the query plan, which further adds to the
complexity. Therefore, to produce a query plan in reasonable
time, the SCOPE query optimizer employs a conservative set
of transformation rules and join ordering heuristics, that may

end up far from the optimal plans. Large query DAGs also
render many of the optimizer estimates, such as cardinality,
skew, correlation, highly inaccurate, introducing more errors
in picking the physical execution plan.
Distributed execution. SCOPE jobs group operators into
stages and runs each stage as multiple tasks in a distributed
manner. Figure 1b shows the cumulative distribution of the
number of tasks in each SCOPE job. We see that more than
half of SCOPE jobs have more than 100 tasks each, with a
third having more than 1000 tasks and a tenth having more
than 10000 tasks! Thus, SCOPE like big data queries are
resource intensive, and orchestrating and executing these large
number of tasks in a reliable fashion is a challenge. It is
therefore important to optimize the distributed execution by
considering number of tasks, packing tasks into containers,
setting the degree of parallelism at each point in the query
plan, deciding the maximum degree of parallelism for the
entire query, and balancing between latency and throughput.
Inputs. Figure 1c shows the cumulative distribution of the
number of structured and unstructured inputs in each of the
SCOPE jobs. First, note that 40% of the SCOPE jobs have
unstructured inputs. Jobs with unstructured inputs are harder
to optimize due to lack of schema, lack of statistics, such
as cardinality, min/max, etc., as well as interesting physical
properties, such as partitioning and sorting, that can aid in
producing more efficient execution plans. Furthermore, note
that several SCOPE jobs access multiple inputs — 15%
have more than 10 structured inputs, 5% have more than
50 structured inputs, and 3% have more than 100 structured
inputs, i.e., a tail of very wide and often critical jobs. Large
number of inputs compound the error due to many different
correlations that are very difficult to mine for petabytes of big
data. Likewise, 10% of jobs have multiple unstructured inputs,
again compounding the errors due to missing statistics.
Operators. Figure 1d shows the relative occurrence of differ-
ent operators in the SCOPE workloads. Note that the shuffle
operator (called Exchange in SCOPE) is the second most
occurring operator after the scan operator. This is interesting
because shuffle is also one of the most expensive operators in
big data processing [15], and so it is crucial to optimize for
that. Furthermore, shuffles are almost five times more frequent
than joins (merge, hash, and loop join taken together). In fact,
even sorts and user defined operators are both three time more
frequent, and often more expensive, than the join operations.
Therefore, in contrast to traditional database wisdom to op-
timize for joins, there are other more important operators to
consider in optimizing big data processing. We dig further into
the data movement and user defined operators below.
Data movement. Figure 1e shows the cumulative distribution
of data movement (shuffle and sort) in each of the SCOPE
jobs. We see that two third of the jobs involve data shuffle,
with half of jobs having multiple shuffles, 28% having 5 or
more shuffles, and 17% having 10 or more shuffles (5% even
having 50 or more shuffles per job!). Likewise, 56% of the
jobs have sort operations, with 20% having 5 or more sort
operations, and 12% having 10 or more sort operations. Thus,
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Fig. 1: Analyzing the query optimization challenges from production big data query workloads at Microsoft.

data movement is prevalent in SCOPE-like big data workloads,
and it is important to optimize these operations. Typical
techniques include creating the right physical designs, e.g.,
partitioning, sorting, etc., for intermediate and final outputs,
tuning the partition counts for balancing the shuffle costs with
the parallelism benefits and considering plans that minimize
the data movement in the first place.

User defined operators. Finally, Figure 1f shows the cumu-
lative distribution of user defined operators (UDOs) in each
of the SCOPE jobs. We see 15% of the jobs have scalar
UDOs, with 8% having multiple scalar UDOs. Likewise, 40%
of the jobs having table UDOs, with 20% having multiple table
UDOs — 10% having 5 or more and 5% having even 20 or
more table UDOs. The reason for such massive use of UDOs in
SCOPE workload is because users often want to express their
business logic using a mix declarative and imperative code
fragments. Unfortunately, however, UDOs appear as black
boxes in the query plans and are very difficult for the optimizer
to reason about: it is hard to estimate cardinality or cost of
the UDOs, and even hard to apply simple transformation rules
such as selection or projection push down.

In summary, query optimization is much harder in big data
systems, making the job of systems developers difficult. The
problem becomes worse in cloud services, where users neither
have the control nor the expertise to tune the query optimizer
for their workloads [11]. Thus, we need automatic techniques
for improving query optimization in big data and below we
discuss why machine learning is a suitable approach.

III. WHY MACHINE LEARNING?
We saw that query optimization is a much harder problem

in big data. In this section, we discuss what makes machine
learning attractive for approaching this problem.

A. Shared Cloud Workloads

First, big data systems are typically deployed in cloud
infrastructures where massive volumes of workload traces
become centrally visible to the cloud provider. This is a shift
from traditional on-premise databases where the fragmented
workloads are locked in customer infrastructures. The central-
ized nature of the infrastructure also incentivizes the cloud
engineers to continually add more instrumentation for better
tracking, monitoring, and troubleshooting. To illustrate, the
SCOPE analytics platform collects job-level metadata (users,
accounts, queuing details, start/submit/end times, etc.), plan-
level data (logical plan, physical plan, stage graph, optimizer
estimates), runtime statistics (various operator- and stage-
wise observables), task-level logs, and machines counters
— together collecting a rich repository of several TBs of
workload metadata per day that could be used for training
sophisticated machine learning models. The shared nature
of big data infrastructure also helps train models over a
diverse set of workload patterns that could be identified across
different customers and accounts.

B. Workload Changes

Big data workloads are also constantly evolving over time.
To analyze the changes, we consider a 7-month trace of
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Fig. 2: Workload changes in one of the production big data clusters at Microsoft over 18.2 million jobs from a 7-month period.

SCOPE workload from one of the production clusters. This
trace consists of a total of 18.2 million jobs, processing a
cumulative input size of 40 Exabytes, and having a cumulative
latency of 3 million hours.

Figure 2 illustrates aggregated daily changes over several
metrics. First of all, the number of SCOPE jobs grow by
24% over the 7-month period (Figure 2a). The jobs are also
27% larger jobs in terms of the average number of operators
per job (Figure 2b). However, the job runtime changes are
staggered because while the inputs sizes and job complexity
grew over time, there are also newer efficiency features added
to the engine or the underlying platform; as a result, the
average latency climbs by almost 90% before coming down
to just a 30% increase (Figure 2c). There are also 69% more
number of tasks per job on average, indicating more distributed
processing (Figure 2d). The queuing time also sees changing
behavior as cluster load and capacity changes over time, still
the average queuing time is up by 80% indicating a very
different cluster load conditions (Figure 2e). Barring a few
seasonalities, the input sizes per job shows an upward trend
with an increase of around 50% from start to end (Figure 2f).
While the data movement has spikes in the closer intervals,
interestingly, it remains relatively flatter in the longer trend
(Figure 2g), We also see a rather unsuspecting change of
around 30% in the number of user defined operators per
job (Figure 2h). This could be triggered by better support
for custom code, adding more programming languages like
Python, and UDO efficiency features.

We see that big data workloads are constantly changing
and the query optimizer need to cope up with these changes
when making the optimization decisions. This is non-trivial
unless the optimizer can constantly update its models by
taking into account the past changes – something not really

possible to do manually (e.g., updating a cost model could
take several months if not years, and workloads would have
changed heavily by then). Machine learning can help the
query optimizer to constantly adapt by training over complex
workload changes and even anticipate the future ones.

C. Current State of Optimization Decisions

We now discuss the current state of several heuristics and
decisions in SCOPE query optimizer. We consider 1-day
workload from the same cluster as analyzed above.
Cardinality. Cardinality is a key statistics for query optimiza-
tion and there has been a lot of recent attention on learning
cardinality models. Figure 3a shows the ratio of estimated and
actual cardinalities in the SCOPE workloads. SCOPE like big
data query optimizers tend to over-estimate the cardinality in
order to avoid having straggler nodes or even failures. The
downside though is that the optimizer may not only end up
choosing sub-optimal plans, it may also over-partition the
intermediate data, thus creating a large number of very small
partitions. Learning cardinalities is challenging in big data
systems due to very large query graphs that make estimation
errors propagate exponentially and presence of large number
of user defined operators that are hard to reason about.
Row Length. Row length is another piece of information,
other than cardinality, that turns out to be very important. It
is used by the SCOPE runtime to compute memory allocation
for each stage. Figure 3b shows the ratio of estimated and
actual row lengths in our analyzed workload. In contrast to
cardinality, row length is mostly underestimated since it is
mostly set to a statically determined constant value.
Cost Model. Cost modeling is a well-known problem and
various prior works have proposed to learn performance mod-
els. Figure 3c shows the ratio of estimated and actual query
latencies. Note that, in contrast to the popular belief, fixing
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Fig. 3: Current state of some of the decision making in SCOPE, illustrating the opportunities where the learning optimizer
could make a difference.

cardinality estimates does not fix the cost model inaccuracies.
This is due to a large number of other moving parts in the
systems, e.g., the way the query is distributed, the amount of
resources allocated, etc., not to mention the presence of large
volumes of custom user code whose cost is very hard to model.
Pod Aggregate. SCOPE job manager can apply rack-level
combiners (from the Hadoop MapReduce terminology) or pre-
aggregations, and the optimizer can provide hints for doing
that. Such an aggregation is useful when a stage is processing
small amounts of data across a large set of machines. Figure 3d
shows the stage input sizes. We can see that large number
of stages process smaller amounts of data and could be
ideal candidates for pre-aggregation. However, estimating the
stage input sizes so that the pre-aggregation can be injected
judiciously turns out to be non-trivial.
Pipeline Physical Design. Figure 3e shows percentage of
times an input data stream is re-partitioned or re-sorted in
a downstream query. We can see that almost 60% of the
inputs are re-partitioned or re-sorted every single time they are
accessed in the downstream query. This is because there are
thousands of SCOPE developers spread across multiple teams
and locations, and it is hard to optimize the producer-consumer
relationships. Rather, providing feedback from past workloads
can help solve this problem. However, the challenge is that
past workloads, and inputs in particular, keep on evolving.
Therefore, the physical design learnings need to consider
things like the time when the design must be scheduled, the
variations in the design, e.g., number of partitions, sort orders,
etc., and the time to live for the designs.
Partition Count. Cloud query optimizers need to decide
the data parallelism, i.e., the number of partitions for each
stage in the query execution plan. However, beyond a point,
increasingly parallelism does not necessarily improve per-

formance [16]. Figure 3f shows the number of partitions
in different stages of our workload. We can see that 25%
have more than 100 partitions and there is a long tail with
up to a million partitions. These are obvious candidates to
reduce the data parallelism. Apart from picking the operator
implementation, partition count is also useful when interfacing
with a disaggregated blob store that is not optimized for
analytical workloads. In such a scenario, providing partition
count hints can help create large block sizes and provide better
locality compared to other cloud workloads supported by the
same blob store.
Container Size. Determining the right size of containers to
be used for processing is increasingly getting more and more
important, especially with increasing heterogeneity in SCOPE
like big data workloads. Figure 3g shows the current state in
terms of the ratio of allocated and needed memory sizes of
containers. We can see that in almost all cases, we allocated
much large containers than needed. Thus, there is a significant
opportunity to learn memory models from the past workload
and tune down the containers to really required sizes.
Cluster Size. Finally, there is a new trend for serverless data
processing. For instance, SCOPE is a job service where each
SCOPE job is allocated a maximum number of containers that
could be used for that job. The current practice is for the users
to provide this configuration for every SCOPE job. Figure 3h
shows the allocated number of containers (as specified by the
users) and the maximum number of containers needed. We can
see that the allocation is all over the place, with 60% of the
workload ending up over-allocating. Again, building models
for estimating the cluster size could help predict the cluster
much more accurately.

Thus, we see that it is really hard to get the query optimizer
estimates and decisions right over complex big data workloads.



Table 1
EstCardinality EstChildCardinality EstCost EstSubgraphCost EstMaxParallelism InputCardinality JobPartitions JobNodes JobInputSize EstJobOutputSize EstJobCost EstJobDataShuffle JobUDOs QueueLength

Cardinality 0.00226 0.00204 0.00065 0.00012 0.10939 -0.00012 0.15792 0.00507 0.10278 0.04404 0.00329 0.00329 0.00138 0.04302
Cost 0.00005 0.00006 0.00002 -0.00003 0.05256 -0.00004 0.05048 -0.00802 0.01821 0.00211 -0.00002 -0.00002 -0.00394 -0.00392
PeakMemory 0.00037 -0.00054 -0.00091 -0.00059 0.73369 -0.00087 0.07063 0.43736 -0.02556 -0.01793 -0.00476 -0.00476 0.11905 0.82479
MaxParallelism 0.00051 0.00052 0.00042 0.00102 0.28291 0.00465 0.07955 0.02994 0.08451 0.01376 0.00280 0.00280 0.01508 0.00074
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Cardinality 0.00226 0.00204 0.00065 0.00012 0.10939 -0.00012 0.15792 0.00507 0.10278 0.04404 0.00329 0.00329 0.00138 0.04302
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(b) Cost

Table 1
EstCardinality EstChildCardinality EstCost EstSubgraphCost EstMaxParallelism InputCardinality JobPartitions JobNodes JobInputSize EstJobOutputSize EstJobCost EstJobDataShuffle JobUDOs QueueLength

Cardinality 0.00226 0.00204 0.00065 0.00012 0.10939 -0.00012 0.15792 0.00507 0.10278 0.04404 0.00329 0.00329 0.00138 0.04302
Cost 0.00005 0.00006 0.00002 -0.00003 0.05256 -0.00004 0.05048 -0.00802 0.01821 0.00211 -0.00002 -0.00002 -0.00394 -0.00392
PeakMemory 0.00037 -0.00054 -0.00091 -0.00059 0.73369 -0.00087 0.07063 0.43736 -0.02556 -0.01793 -0.00476 -0.00476 0.11905 0.82479
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(c) Container Size

Table 1
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(d) Cluster Size
Fig. 4: Pearson correlation for four estimations, namely cardinality, cost, peak memory, and maximum parallelism.

(a) Cardinality (b) Cost (c) Container Size (d) Cluster Size
Fig. 5: Pearson correlation distributions for four above estimations when using the micromodel approach.

IV. MICROLEARNER
We saw how query optimization is a much harder problem

in big data, both due to the large space of workloads and
the large number of decisions to make. We also saw that
machine learning becomes attractive for this problem due to
the presence of shared cloud workloads, where one can learn
across several users, the constantly changing nature of cloud
workloads that is very hard to cope up with using manually
crafted query optimizers, and the difficult state of current
optimizer heuristics and decisions that are simply very hard
to get right due to the complexity of the problem.
One size does not fit all. Given the massive workloads
available in modern services, it is tempting to simply feed
them into a machine learning library. Unfortunately, it turns
out that learning machine learning models that capture the
global behavior of the entire workload is incredibly difficult,
if not infeasible. To illustrate, Figure 4 shows the global
correlations of the actual values of four key metrics (cardi-
nality, cost, container size, and cluster size) estimated by the
query engine with several of the compile-time features. We
can see that single variable correlations are very low, making
it hard for data scientists to featurize the complex big data
workload characteristics using traditional machine learning.
Apart from complexity, big data query workloads are often
sparsely populated dense clusters, i.e., even though there are
similar queries, it is still highly sparse overall. This means
that even the large cloud workloads are far from sufficient to
identify hidden representations and train deep learning models.
Micromodels. We propose to characterize big data workloads
into fine-grained subsets and learn separate models, called
micromodel, for each of those subsets. Figure 5 shows the
correlations with micromodels when the workload is divided
into smaller specialized subsets. We can see that the correlation
increases substantially for a large number of subsets. Thus,
micromodels make it possible to learn accurate models over
complex cloud workloads. Micromodels are further helpful for

scalable model training by training different micromodels in
parallel, creating lightweight models that are easier to score
within the query optimizer, and even isolating performance
regressions by selectively enabling the good micromodels.
System Architecture. Figure 6 shows the Microlearner ar-
chitecture that consists of optimizer extensions for additional
telemetry to help characterize the workloads and apply targeted
feedback to specific types of workload (center box), artifacts
repository to collect telemetry, often in different stages, and
derived datasets (right box), analysis pipeline to simplify and
scale the model training process and to build confidence for
productization (bottom layer), model serving layer to facilitate
low latency model lookup and to perform diagnostics and
control (left box), tools for a productive operational and data
science user experience (top layer).
Applications. Over the last couple of years, we have used Mi-
crolearner to build several applications, including fine-grained
models for learning cardinality estimates [3], robust and
resource-aware cost models [17], models for predicting peak
parallelism of analytical jobs [18], models to predict reuse
opportunities for multi-query optimization [19], predicting
checkpoints for job resiliency or system efficiency, predicting
the downstream behavior in a data pipeline to optimize the
end to end pipeline, predicting when to combine intermediate
data (early aggregation), predicting peak memory consumption
to improve the allocation at runtime, and predicting average
row length to correctly estimate the intermediate size for
data movement. Likewise, there are other data properties
(e.g., correlations, skew), cost models (stage-wise, job-wise),
optimizer rule hints (to better navigate the search space),
and resource optimization decisions (e.g., container type) that
could be learned. Thus, the Microlearner architectures allows
a large class of applications to improve the performance and
efficiency of cloud query engines.

In the rest of this section, we describe the core platform
that has made it easy to quickly build the above applications.
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Fig. 6: The detailed set of components in the Microlearner platform.

A. Workload Characterization

Microlearner captures the traits of complex cloud workload
into a hierarchy of subsets, where each subset has a unique
identifier called signature. The most straightforward charac-
terization is to consider each query in a workload as different
subset. Then, the signature for each query could be the query
name or a hash of the query string. However, queries could be
further characterized using the query plans, e.g., the input plan,
the logical plan, the physical plan, or the execution plan, and
then the sub-plans in each of the query plan. The plan (the or
sub-plan) could be represented by a hash of plan (sub-plan)
string, or the expression id of the plan (sub-plan) from the
optimizer’s memo (e.g., semantic hash in Spark Catalyst). We
can further characterize sub-plans by first considering the root
operator of the sub-plan, then the set of inputs at the leaf level,
and then the operator counts in the sub-plan. Likewise, we can
add arbitrary number of features from the sub-plan to make
the characterization narrower, until we have sub-plans with the
same structure and the same parameters. As we go down this
characterization tree, the workload is divided into smaller and
more homogeneous subsets that are easier to train models on.
The depth of the characterization tree is chosen such that final
subsets are small enough to learn accurate models on the given
workload. To illustrate, Figure 5 shows the CDF of correlations
for different workload subsets. We can see that correlations
change significantly with subset granularity, with significantly
higher correlations in many of the subsets. Figure 7 shows how
the workload gets characterized differently based on the subset
strategy, e.g., characterization using exact query subgraph
can create many fine-grained subsets (low frequency), while
characterization based on operators create more coarse-grained
subsets (high frequency); others are somewhere in between.
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B. Scalable Model Training

The above workload characterization is helpful in scal-
ing out the training by learning micromodels for different
workload subsets independently in parallel. As a result, Mi-
crolearner can scale to very large workloads by leveraging the
massive parallelism in cloud systems. We further represent
the query workload as a flat denormalized table consisting of
both compile-time and run-time features for all operators in
all queries in the workload [11]. This tabular representation
coupled with the fact that we train micromodels on smaller
workload subsets that are more homogeneous makes linear
models very attractive, both for accuracy as well as perfor-
mance and maintainability. In fact, popular big data systems,
such as SCOPE, Spark, and SQL DW already support custom
Python UDFs where popular machine learning libraries such as
Scikit-learn [20] could be used to train micromodels with ex-
isting data infrastructure1, without requiring separate training
infrastructure or expensive hardware. This is convenient since
all analysis and training can run in a single environment.

Microlearner hash partitions the training data on signatures
and distributes them over hundreds of containers for parallel
processing using SCOPE. Microlearner further provides the

1Could be the same engine that we are trying to optimize in the first place.



flexibility to change the training window, from days to weeks
to months, and the training granularity, from the strictest
subplans to the generalized operators. It also allows to combine
models from different granularity into a hierarchy of micro-
models [21], [22]. For retraining, it is easier to simply replace
the specific micromodels with their newer versions.

C. Regression Validation

One of the biggest challenge in deploying micromodels
is to avoid performance regression, i.e., learned models can
lead to a detrimental system behavior. This could be due to
a number of factors, including large prediction errors, high
sensitivity to workload changes, lack of coverage on portions
of the workload due to the fine-grained nature of model
training, or the model impacts heuristics whose inaccuracies
were compensated for in other parts of the system (e.g., poor
cardinalities are sometimes compensated in the cost models).
Therefore, it is crucial to build the confidence for production.
Fortunately, due to their fine-grained nature, micromodels can
be selectively filtered to reduce the chances of performance
regressions. Microlearner provides multiple levels of checks
to do this filtering. First of all, micromodels can be filtered
based on their training and cross-validation errors, e.g., we
can define the thresholds for minimum baseline and maximum
training errors. We then recompile the jobs in the training data
set using the filtered models and separate out the models that
are applicable to jobs with query plan changes (in structure or
estimators like execution cost). Models that only impact jobs
with no plan changes are discarded since they do not improve
anything. We validate the set of filtered models against a
workload from a subsequent time period to consider minor
workload changes and filter models that are sensitive to them.
Thereafter, we run preproduction experiments on the produc-
tion jobs that are going to be impacted by the validated models.
In case a large number of jobs are going to be impacted,
we deduplicate similar jobs and take a sample of them. We
compare the preproduction performance of jobs, with and
without the validated models, and consider several factors
(latency change, total number of containers, total processing
time) to determine whether or not we have a regression. We
add the models that do not contribute to any regressions to an
accept list and deploy them to production. While we have a
functional approach for regression validation in Microlearner,
there is a lot of room for improvement, especially better
isolation of models causing plan changes, better sampling
for reduced preproduction experimentation costs, and more
accurate regression identifiers, considering cluster variance.
These will be a part of future work.

D. Model Management & Lookup

Model training in Microlearner is scheduled periodically
based on factors such as experimentally derived retraining
intervals, data or concept drift, changes in model coverage
based on the number of model lookup calls, or other external
factors, e.g., new query engine release or customer specified
training intervals. We serialize the resulting micromodels into

a feedback file and upload it asynchronously to the serving
infrastructure. For linear models, serialization is simply into
key-value pairs of features and their weights. Each model is
also accompanied by its signature (identifying the workload
subset it was trained on) and the model type (e.g., cardinality,
cost, memory, parallelism, etc.)

Microlearner keeps track of the following model metadata.
First of all, we keep track of the query engine version
from where the training data came from. This is important
because different query engine versions could evolve various
estimators, query optimization logic, or even the runtime
performance characteristics. Then, we track the version for
the analysis and training scripts to differentiate changes in
preprocessing steps and the training logic. We also track the
parameters used for training, including the customer accounts
whose data is used for training, the date range over which
the models are trained, and any other configurations used by
the models. Finally, we keep track of model dependencies,
i.e., whether predictions from one model might be used as
features for another model. The above tracking is helpful for
debugging, explainability, and purging models with specific
lineage, such as for GDPR scenarios [23]. All tracking is done
using the MLflow APIs in Azure Machine Learning [24].

E. Model Lookup & In-Optimizer Inference

Micromodels are served over a REST interface to the query
engine. The difference though is that instead of serving pre-
dictions, the serving layer serves the model strings that could
be scored in-process within the query optimizer. Furthermore,
all models strings for a given query are batched together in a
single call to reduce the communication overhead. As a result,
Microlearner can load a large number of models with very low
latency (10s of milliseconds) into the query optimizer. We load
the micromodels as annotations to the query optimizer. These
annotations are indexed by the signatures and contains a list
of models, along with their types, for each signature. These
query annotations are preserved in the optimizer context and
available throughout query optimization for possible action.
To take action, the optimizer performs the following steps:
(1) iterate over all available group2 signatures, (2) for each
signature consider available models, (3) for any applicable
model, invoke the scoring function, and (4) use the score to
replace heuristics with better decisions The last step involves
targeted code change for every feature where we replace hard
coded constants, inaccurate heuristics, or a complex logic with
a simplified inference from the micromodels. Given linear
models and in-process scoring within the query optimizer, the
code changes can even speed up complex code paths by taking
alternate paths with faster model inference, e.g., predicting
cardinalities over complex subexpressions could be faster with
linear models compared to applying complex heuristics.

F. Monitoring & Incident Management

Whenever a micromodel is applied in the query optimizer,
we log the usage in the plan info logs. These logs could

2Group of equivalent query subexpressions.



also be used in case of production incidents to quickly
narrow down whether the incident is due to one or more
micromodels. For quick mitigation, there are job-level flags
to disable specific micromodels. If case the mitigation is
confirmed, then micromodels could be disabled for specific
jobs or customer accounts. Furthermore, due to the fine-
grained nature of micromodels, Microlearner can also disable
specific incident-causing models while still keeping the rest of
them operational. In the extreme case, all micromodels (of a
particular type or globally) could be disabled.

G. User Experience

Our goal is to provide a configurable, debuggable, and ex-
plainable experience to our users. Therefore, we provide sev-
eral configurations to enable/disable different features, training
analysis and insights to help customers build confidence (e.g.,
observing the model accuracy and other metrics, manually
inspect and verify the baseline behavior in their jobs, and
identify the KPIs to keep track of once they enable a set of
micromodels), and cooked (anonymized) workload telemetry
for exploratory analysis by researchers and developers to
identify the next set of opportunities.

V. PRODUCTIZATION

In this section, we describe our production experience and
the challenges faced when deploying Microlearner in SCOPE.
We take the example of cardinality models [3] as a concrete
scenario and discuss the process of upgrading the SCOPE
optimizer from default cardinality models to the learned mi-
cromodels. Below we first present micromodel training and
validation on production clusters, then discuss pre-production
experiments to analyze runtime performance, then show the
impact in production environments, then analyze some of the
production plan changes that bring significant improvements,
and finally conclude with the open challenges.

A. Model Training and Validation

We trained cardinality models over a large production clus-
ter, and considered 6 days’ worth of SCOPE jobs, consisting
of ∼564 SCOPE jobs, from the above cluster and trained
cardinality models over them (∼400K micromodels over
153M query subexpressions). The 95th error of these learned
cardinality models is just 1%, compared to 465711% for the
default optimizer. We recompiled all jobs with the learned
cardinality models and extracted the subset of jobs having plan
changes with the learned models. These constitute roughly
one-third of the total workload, with ∼52K relevant micro-
models. Thereafter, we validated the relevant micromodels on
1 subsequent day of workload, consisting of ∼93K SCOPE
jobs. The total training time was ∼6 hours and validation time
was ∼1 hour, both using 200 containers each, and the total size
of all validated micromodels was 1.5MB.

Given the training and validation results, our goal now is
to identify the good micromodels that are expected to lead to
better performance. After several rounds of experimentation in

pre-production environment, we came up with the following
heuristics to filter out the good micromodels:
(1) The average difference between the baseline cardinality
estimation and the actual cardinalities must be at least 100%,
i.e., current optimizer estimates must be significantly off.
(2) The maximum difference between the validated and actual
cardinalities must be within 100%, i.e., validation results are
up to 2x in the worst case.
(3) The average difference between the validated and actual
cardinality must be within 10%, i.e., validation results are very
close to actual on average.
(4) The maximum difference between validated and predicted
cardinalities must be within 1%, i.e., the model must be
relatively stable over time.

The above heuristics result in ∼10K high quality models
that impact ∼20% of the overall workload, which is a sizable
given that learned cardinality is the most plan changing
feature in SCOPE till date. Note that our heuristics are highly
conservative to avoid early regressions and build customer
confidence, and we expect a few rounds of retraining to
stabilize the system behavior.

B. Pre-production Experiments

We group the production jobs that are applicable to the
filtered set of good micromodels into recurring pipelines, i.e.,
different instances of similar SCOPE scripts that get executed
periodically, and randomly pick one instance from each of
these recurring pipelines. Also, given that our cardinality
micromodels are sparse, i.e., they may not cover all portions of
a query graph, we filter out super large sized jobs (exceeding
one hour of execution time) since they are more likely to
be impacted with this sparsity. This results in 1149 unique
pipelines that we can run pre-production experiments on. We
re-run each of these pipelines over their original inputs but
redirect their output to a dummy location, similar as in prior
work [3], [19], [25]. We provide the same amount of resources
as in the original execution but disable opportunistic resource
allocation [26] in order to be able make a fair comparison.
For each pipeline, we run the randomly chosen job instance
twice: once with the learned cardinality models and once with
the default cardinality estimators. For each job that we ran, we
report the percentage difference in job latency, total processing
time, and total number of containers for the two runs of the
job, with and without cardinality micromodels.

Figure 8 shows the results for pipelines exhibiting overall
performance improvement (a negative change implies im-
provement while a positive change implies degradation). Note
that pipelines behave differently on different metrics. There-
fore, we consider a pipeline to improve if one of the metrics
improve significantly with at most 15% latency or processing
time overhead, and up to 40% more number of containers. This
is to take into account runtime variance in cloud environments
and to also allow limited tradeoff of one metric for another,
e.g., trading more containers for lower latency. We observe
from Figure 8 that the changes in latency have fewer spikes
than the other two metrics, thereby suggesting that it is hard to



Fig. 8: Pre-production performance of learned cardinality on a large production workload of 1081 production pipelines,
representing over 10s of thousands of production jobs in total.

Fig. 9: Performance regressions in 68 production pipelines.

gain massive latency improvements. The reason for this is that
latency improvement in distributed query processing depends
on the critical path, and better cardinalities may or may not
impact that path. On the other hand, better cardinalities will
most likely improve the total processing time, i.e., the sum of
processing times of all containers in all paths, as evidenced
by longer spikes for total processing time in Figure 8. This
is highly desirable for overall cluster efficiency. Finally, the
change in the number of containers is much more dramatic,
more than 50% in a large number of pipelines. This is because
overestimating the cardinalities leads to over-partitioning of
data and hence more number of containers used for pro-
cessing; imagine thousands of containers each processing few
megabytes of data. This is wasteful in several ways including
data movement and IO, costs to allocate the large number
of containers, more load on the resource manager, and even
higher chances of task failures leading to higher recovery
costs. More accurate cardinalities can therefore prevent many
of these issues. Overall, we see an average improvement of
6.41% in latency, 6.90% in total processing time, and 8.29%
in total number of containers for the above pipelines.

Figure 9 shows performance regressions in 68 pipelines.
Overall, regressions are most serious in terms of latency, which
cannot regress beyond the SLAs. The total processing time and
the total number of containers regress far less, although there
are few spikes that are detrimental to other jobs in the cluster
and for overall efficiency. Fortunately, Microlearner allows
disabling the relevant micromodels for these pipelines, and
thereby avoiding regressions in the actual production setting.

C. Production Deployment

Figure 10 shows the production impact when deploying
cardinality micromodels for one of the customer. The green
arrow shows the day when the micromodels were enabled and
the three charts show the cumulative latency, the cumulative
processing time, and the cumulative number of containers per
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Fig. 10: Production impact for a customer since deployment.

day, over a 19 day period, for this customer. We can see
that enabling cardinality micromodels smoothens the peaks,
i.e., extreme performance behavior that is typically caused by
extreme inaccuracies in cardinality estimation. Overall, since
deployment, we see an average daily reduction of 69.2% in
cumulative latency, 68.9% in cumulative processing time, and
71.5% in cumulative number of containers. These translate to
significant efficiency gains in hundreds of millions of dollar
worth of cloud infrastructure.

To the best of our knowledge, this is the first production
deployment of learned cardinality models.

D. Case Studies

We now dig deeper into some of the cases and analyze the
query plans to understand where the gains come from.
Case 1: avoiding explosion with cross-join. Figure 11a shows
a cross-join operation where the inputs as well as the result
are very small. However, the cardinality estimation in this case
is off by several orders of magnitude which causes the cross
join to explode the number of partitions, thus creating a large
number of containers which process very small amount of data.
After feedback, the optimizer falls back to a serial plan that
saves 95% in total processing time.
Case 2: better join partition choice. Figure 11b also shows
a cross-join but this cannot be converted to a serial plan
since it still emits a large output. To address over-partitioning,
the default optimizer adds an intermediate aggregate to both
inputs, however this is not enough. Therefore, with feedback,
the optimizer fixes the partition count to not over partition on
one side, thus reducing 67% in total processing time.
Case 3: better grouping and partition choice in union op-
eration. Figure 11c shows a union operator which can be
implemented either as a partition aligned union all or as
concatenation followed by exchange and sorting later on.
Some of the inputs to the union become small after filtering
operations, while others remain large. Therefore, based on
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(a) Avoid cross-join explosion (b) Better join partition choice

(c) Better grouping and partition choice (d) Better algorithm choice
Fig. 11: Case study of a few query plan changes that lead to significant performance improvements with learned cardinality.

the feedback, the optimizer groups them in a different way
and tries to minimize over partitioning, from 4000 containers
processing just 30MB of data to a few hundreds, which reduces
the total processing time by 73%.
Case 4: better algorithm choice for union operation. Finally,
Figure 11d shows another union operation where we don’t
need to do paired union all, since it will increase the number
of partitions, while the datasets are extremely small. Instead,
using a virtual dataset to simply concatenate the inputs and
performing exchange later on will produce better serial plans,
leading to 95% reduction in total processing time.

E. Open Challenges

There are several open challenges when deploying micro-
models to production. We list some of them below.
Imputation. First of all, the training data for Microlearner
is often incomplete. While getting the query plans and the
compile time estimates are trivial, it is non-trivial to link them
to the actual runtime statistics. This is because a physical
query plan is transformed into a set of pipelined stages, the
stage graph, that runs in parallel in a distributed environment.
This transformation could add or remove operators, pipeline or
parallelize operations making it harder to collect fine-grained
runtime statistics, and even change dynamically at runtime
depending on the cluster conditions or adaptive execution.
Consequently, we need more systematic approaches to deal
with missing values in training data, including approaches to
understand when it really matters to impute in the first place.
Training bias. Optimizers are tasked with a very large search
space which inevitably leads to learning bias when learning
from the past workloads. For instance, learning cardinality
models could introduce bias towards the observed executions
in the past. Newer inputs could in fact lead to unpredictable
performance. One way to address this problem is by exploring
different parts of the search space, e.g, trying alternate join
orders for building more cardinality models [3]. However,
this could be expensive or infeasible depending on production
settings. Therefore, we believe this is still an open problem.

Model variance. Learned models also need to be robust to
changes in the workload. Although this goes against the notion
of instance optimization, this is important in cloud systems due
to the huge gap between the default and the optimal decisions,
and the risk of good model falling off the cliff to very poor
defaults. Thus, robustness is highly desirable property.
Coverage. Our micromodel approach allows to create fine
grained and specialized models that are likely to be highly
accurate. However, this also introduces the risk of not being
able to cover the entire workload. Therefore, we see a trade-
off between accuracy and coverage over the workload. Our
recent work tried to employ an ensemble-based approach to
strike a good middle ground [17]. However, striking the sweet
spot between the two is still an open problem.
In-process scoring. The goal of Microlearner is to incorporate
a large number of learned models into the optimization pro-
cess. Typically, the SCOPE query optimizer would take up to a
few seconds end to end for a reasonably sized query. However,
with more complexity and more micromodels, the inference
overheads need to be very low. The traditional approach is
to serve inference from REST end points. However, with Mi-
crolearner, we want to score the micromodels in-process, e.g.,
using libraries such as ONNX [27]. Low inference time also
dictates the featurization overhead and the choice of simple
versus complex models. Inference latency is a challenge as
the number of micromodels grow in Microlearner.
Tracking. Increasingly, there is a need to improve model
tracking and governance. This is not just for audit purposed but
also for service operators to be able to operations like locating
the models currently in use, identifying the datasets they were
trained on, invalidating models based on requirements such as
GDPR, or simply just tracing their coverage and accuracy over
time. For example, deployment of new SCOPE release should
trigger re-training of the cardinality models since there might
be new operators introduced or new optimizer rules added that
need to be considered in cardinality models.
Troubleshooting. Finally, the service operators need to be



able to troubleshoot incidents. For example, for a customer
support request, is there a way to disable a cardinality model?
Disabling one cardinality model could impact many other jobs,
so how we disable a set of models? What is the fallback
strategy? Answering some of the questions are important for
a seamless customer experience.

VI. CONCLUDING REMARKS

No one model fits all. Cloud workloads are highly hetero-
geneous and it is really hard to fit a single global model to
the entire workload: it would require humongous training sets
and very thorough featurization for learning such a model.
In our experience, global models ended up being highly
erroneous since they were unable to capture the large number
of behaviors. Instead, learning smaller micromodels for spe-
cific patterns in the workload turns out to be more feasible.
The downside is that micromodels may not cover the entire
workload. One possibility is to combine multiple micromodels
or combine them with a global model, similar to recursive-
model index [21] or the mixture of experts approach [22]. Still,
we believe there is an interesting interplay between accuracy
and coverage that needs to be explored further.
How big is the black box. Given that the optimizer makes
several key decisions, many of which are composed of each
other, the question is what granularity to learn at. For instance,
one could consider learning the output plan generated from
an input query. Likewise, we could consider learning the cost
model directly on the query without using cardinality as input,
and so on. While bigger black boxes may seem more attractive
since they can hide more complexity, they are also more
difficult to get right. Learning fine grained micromodels on the
other hand adds to the optimizer composability, understand-
ability, and debuggability – all being huge pluses for system
developers. Thus, there is a trade-off between hiding optimizer
complexities and making it more amenable to developers.
Simple vs complex models. While popular machine learning
tools provide sophisticated models and algorithms, much of
the applied machine learning still relies on simpler models,
e.g., linear models. This is because they are easier to featurize
for, faster to train, and easier to debug or reason about. Thus,
simple models are easier to deploy, though it comes at the cost
of lower predictability.
Debugging / explainability. The optimizer codebase was more
debuggable and understandable before, however, micromodels
introduce black boxes into the system. This makes the lives
of systems developers hard in the face of customer incidents
or support requests. Therefore, being able to explain, debug,
modify, and disable micromodels are going to be the software
essentials before every release. This is partly because the
system developers are not really machine learning experts, and
partly because some models are inherently tough to explain.
System experiments. Finally, any software release involves
an end-to-end validation using system experiments in a pre-
production environment. Typically, these system experiments
are designed by constructing a limited set of representative
workload based on prior experience. Alternatively, domain

experts add specific tests for new features based on their
understanding of those features. Unfortunately, by introducing
micromodels (for different features or specific models for
each feature), system experiments become very hard because:
(i) there is a large number of knobs to turn different micro-
models on or off, (ii) these micromodels are hard to understand
by domain experts and hence hard for them to test convinc-
ingly, and (iii) there are a limited set of resources in pre-
production environment anyways. Thus, designing effective
system experiments that can identify the set of production
ready micromodels with high enough confidence within the
constraints of the pre-production environments is a major
challenge. We believe this would be interesting future work.
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