
Computation Reuse in Analytics Job Service at Microsoft
Alekh Jindal, Shi Qiao, Hiren Patel, Zhicheng Yin, Jieming Di, Malay Bag, Marc Friedman,

Yifung Lin, Konstantinos Karanasos, Sriram Rao
Microsoft

{aljindal,shqiao,hirenp,zhyin,jiedi,malayb,marc.friedman,yifungl,kokarana,sriramra}@microsoft.com

ABSTRACT

Analytics-as-a-service, or analytics job service, is emerging as a
new paradigm for data analytics, be it in a cloud environment or
within enterprises. In this setting, users are not required to manage
or tune their hardware and software infrastructure, and they pay
only for the processing resources consumed per job. However, the
shared nature of these job services across several users and teams
leads to significant overlaps in partial computations, i.e., parts of
the processing are duplicated across multiple jobs, thus generating
redundant costs. In this paper, we describe a computation reuse
framework, coined CloudViews, which we built to address the
computation overlap problem in Microsoft’s SCOPE job service. We
present a detailed analysis from our production workloads to moti-
vate the computation overlap problem and the possible gains from
computation reuse. The key aspects of our system are the follow-
ing: (i) we reuse computations by creating materialized views over
recurring workloads, i.e., periodically executing jobs that have the
same script templates but process new data each time, (ii) we select
the views to materialize using a feedback loop that reconciles the
compile-time and run-time statistics and gathers precise measures
of the utility and cost of each overlapping computation, and (iii) we
create materialized views in an online fashion, without requiring
an offline phase to materialize the overlapping computations.

KEYWORDS

Materialized Views; Computation Reuse; Shared Clouds

ACM Reference Format:

Alekh Jindal, Shi Qiao, Hiren Patel, Zhicheng Yin, Jieming Di, Malay Bag,
Marc Friedman, Yifung Lin, Konstantinos Karanasos, Sriram Rao. 2018.
Computation Reuse in Analytics Job Service at Microsoft. In SIGMOD’18:
2018 International Conference on Management of Data, June 10–15, 2018,
Houston, TX, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3183713.3190656

1 INTRODUCTION

1.1 Background

There is a recent trend of offering analytics-as-a-service, also re-
ferred to simply as job service, by major cloud providers. Examples

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3190656

 0

 20

 40

 60

 80

 100

clus er1 clus er2 clus er3 clus er4 clus er5

P
er

ce
nt

ag
e

Overlapping jobs
Users with overlapping jobs

Overlapping subgraphs

Figure 1: Computation Overlap in different production clus-

ters at Microsoft.

include Google’s BigQuery [15], Amazon’s Athena [3], and Mi-
crosoft’s Azure Data Lake [5]. Similar job services are employed for
the internal needs of large enterprises [11, 49]. These services are
motivated by the fact that setting up and running data analytics is a
major hurdle for enterprises. Although platform as a service (PaaS),
software as a service (SaaS), and more recently database as a ser-
vice (DBaaS) [4, 6] have eased the pain of provisioning and scaling
hardware and software infrastructures, users are still responsible
for managing and tuning their servers. A job service mitigates this
pain by offering server-less analytics capability that does not require
users to provision and manage servers. Instead, the service provider
takes care of managing and tuning a query engine that can scale
instantly and on demand. Users can get started quickly using the
all familiar SQL interface and pay only for the processing used for
each query, in contrast to paying for the entire provisioned server
infrastructure irrespective of the compute resources actually used.

1.2 Problem

Given the above shift from provisioned resources to actually con-
sumed resources, enterprises naturally do not want to duplicate
their resource consumption and pay redundant costs. However, this
is a major challenge in modern enterprise data analytics which
consists of complex data pipelines written by several users, where
parts of the computations end up running over and over again. Such
computation overlap not only adds to the cost, but it is also really
hard for the developers or even the administrators to detect these
overlaps across different scripts and different users.

To illustrate the problem, consider SCOPE [11, 52], which is
the equivalent of Azure Data Lake for internal data analytics at
Microsoft. SCOPE is deployed over hundreds of thousands of ma-
chines, running hundreds of thousands of production analytic jobs
per day that are written by thousands of developers, processing
several exabytes of data per day, and involving several hundred
petabytes of I/O. Almost 40% of the daily SCOPE jobs have com-
putation overlap with one or more other jobs. Likewise, there are

millions of overlapping subgraphs that appear at least twice. These
overlaps are incurred by 70% of the total user entities (humans
and machines) on these clusters. Figure 1 shows the cluster-wise
computation overlap in five of our clusters. We can see that all clus-
ters, except cluster3, have more than 45% of their jobs overlapping.
Likewise, more than 65% of users on all clusters end up having
computation overlap in their jobs and the percentage of subgraphs
appearing at least twice could be as high as 80%. While the ideal
solution would be for the users to modularize their code and reuse
the shared set of scripts and intermediate data, this is not possible in
practice as users are distributed across teams, job functions, as well
as geographic locations. Thus, we need an automatic cloud-scale
approach to computation reuse in a job service.

1.3 Challenges

There is a rich literature for materializing views [19, 20, 22, 30, 33,
44, 46, 53] and for reusing intermediate output [10, 12, 18, 23, 36–
38, 50]. However, there are a number of new challenges in building
a computation reuse framework for the SCOPE job service.

First, enterprise data analytics often consists of recurring jobs

over changing data. The SCOPE job service has more than 60% of the
jobs in its key clusters as recurring [25]. With recurring jobs, sched-
uling and carefully materializing views over the new data is crucial,
which was not an issue in traditional view selection. Incremental
maintenance would not work because data might be completely
new. SCOPE jobs are further packed in tight data pipelines, i.e.,
multiple jobs operate in a given time interval with strict comple-
tion deadlines. Tight data pipelines leave little room to analyze the
recurring workload over the new data in each occurrence.

Second, we need a feedback loop to analyze the previously
executed workload and detect overlapping computations. Given
the large volume of overlaps, materializing all of them for reuse
is simply not possible. Typical methods to select the interesting
overlaps (or views) depend on the utility and cost of each overlap,
i.e., the runtime savings and the storage cost of each overlap. Unfor-
tunately, however, the optimizer estimates for utility and costs are
often way off due to a variety of factors (unstructured data, inaccu-
rate operator selectivities, presence of user code, etc.) [17, 29, 31].
Thus, the feedback loop needs to reconcile the logical query trees
with the actual runtime statistics to get more precise measures of
utility and cost of each overlap.

Third, a job service is always online and there is no offline phase
available to create the materialized views, which is expected with
traditional materialized views. Halting or delaying recurring jobs
to create materialized views is not an option, as it carries the risk
of not meeting the completion deadlines and affecting downstream
data dependency. Thus, we need to create materialized views just
in time and with minimal overheads. This is further challenging
because multiple jobs can now compete to build views (build-build
interaction), and they depend on each other for the availability of
views (build-consume interaction).

Finally, we need an end-to-end system for computation reuse
that has a number of requirements, including automatic reuse and
transparency to the end users, that are inspired from our production
environments.

1.4 Contributions

In this paper, we describe why and how we built an end-to-end
system for automatically detecting and reusing overlapping compu-
tations in the SCOPE job service at Microsoft. Our goal is to allow
users to write their jobs just as before, i.e., with zero changes to
user scripts, and to automatically detect and reuse computations
wherever possible. We focus on exact job subgraph matches, given
that exact matches are plentiful and it makes the problem much
simpler without getting into view containment complexities. Al-
though we present our ideas and findings in the context of the
SCOPE job service, we believe that they are equally applicable to
other job services. Our core contributions are as follows.

First, we present an analysis of the computation reuse opportu-
nity in our production clusters to get a sense of the magnitude of
the problem and the expected gains. Our analysis reveals that com-
putation overlap is a major problem across almost all business units
at Microsoft, with significant runtime improvements to be expected
with relatively low storage costs. We also note that the overlaps of-
ten occur at shuffle boundaries, thereby suggesting that the physical
design of the materialized view is important (Section 2).

Then, we discuss enabling computation reuse over recurring jobs.
The key idea is to use a combination of normalized and precise
hashes (called signatures) for computation subgraphs. The normal-
ized signature matches computations across recurring instances,
while the precise signature matches computations within a recur-
ring instance. Together these two signatures enable us to analyze
our workload once and reuse overlapping computations over and
over again (Section 3).

We provide an overview of our CloudViews system, an end-
to-end system for computation reuse in a job service, along with
our key requirements and the intuition behind our approach. The
CloudViews system consists of an offline CloudViews analyzer
and an online CloudViews runtime. To the best of our knowledge,
this is the first work to present an industrial strength computation
reuse framework for big data analytics (Section 4).

We describe the CloudViews analyzer for establishing a feed-
back loop to select the most interesting subgraphs to materialize
and reuse. The CloudViews analyzer captures the set of interesting
computations to reuse based on their prior runs, plugs in custom
view selection methods to select the view to materialize given a set
of constraints, picks the physical design for the materialized views,
and also determines the expiry of each of the materialized views.
We further describe the admin interface to trigger the CloudViews
analyzer (Section 5).

We describe the CloudViews runtime which handles our online
setting for computation reuse. Key components of the runtime in-
clude a metadata service for fetching the metadata of computations
relevant for reuse in a given job, an online view materialization
mechanism as part of the job execution, a synchronization mech-
anism to avoid materializing the same view in parallel, making
materialized views available early during runtime, automatic query
rewriting using materialized views, and job coordination hints to
maximize the computation reuse (Section 6).

Thereafter, we present an experimental evaluation of Cloud-
Views. We present the impact over production workloads at Mi-
crosoft, both in terms of latency and CPU hours. Our results show

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

P
er

ce
nt

ag
e

O
ve

rla
p

Vir ual Clus ers
(a) Percentage overlap

 1

 10

 100

 0 20 40 60 80 100 120 140 160A
ve

ra
ge

 O
ve

rla
p

Fr
eq

ue
nc

y
Vir ual Clus ers

(b) Average overlap frequecy

Figure 2: Overlap in one of the largest SCOPE clusters

an average and overall latency improvement of 43% and 60% respec-
tively, as well as an average and overall CPU hour improvement
of 36% and 54% respectively. We further show evaluation over the
TPC-DS benchmark. Our results show 79 out of the 99 TPC-DS
queries having improvements with CloudViews, with an overall
runtime improvement of 17%. We also discuss the various over-
heads of CloudViews, including the cost of workload analysis, the
metadata lookup, and the impact on compiler runtime (Section 7).

Finally, we discuss the lessons learned from the CloudViews
project. (Section 8)

2 THE REUSE OPPORTUNITY

We saw the overall overlap across our SCOPE clusters in Figure 1.
Below we analyze the overlap at different granularity levels.

2.1 Overlap within a Cluster

We analyze one of the largest clusters, in terms of the number
of jobs, to better understand the overlap. Figure 2(a) shows the
percentage of jobs overlapping in each of the virtual clusters1 (VCs)
in this physical cluster. Our analysis shows that while some VCs
have no overlapping jobs, 54% of the VCs have more than 50%
of their jobs overlapping, and few others have 100% of their jobs
overlapping. Figure 2(b) shows the average overlap frequencies
across different virtual clusters. The average overlap frequency
ranges from 1.5 to 112 (median 2.96, 75th percentile 3.82, 95th
percentile 7.1). The key lesson here is that computation overlap
is a cluster-wide phenomenon and not limited to specific VCs or
workloads.

Our interactions with the internal SCOPE customers reveal two
main reasons for the prevalence of computation overlap seen above:
(i) users rarely start writing their analytics scripts from scratch,
rather they start from other people’s scripts and extend/modify
them to suit their purpose, (ii) there is a data producer/consumer
model at play in SCOPE, where multiple different consumers pro-
cess the same inputs (generated by the producers), and they often
end up duplicating the same (partial or full) post-processing over
those inputs.

2.2 Overlap within a Business Unit

We further analyze one of the largest business units, in terms of
the number of jobs, in the above cluster. Figure 3 shows the over-
lapping computations from all VCs in this business unit. Note that
1A virtual cluster is a tenant having an allocated compute capacity, called tokens, and
controlling access privileges to its data.

business unit is a meaningful granularity because VCs within a
business unit compose a data pipeline, with some VCs cooking the
data (producers) and some VCs processing the downstream data
(consumers).

Figures 3(a)–3(d) show the cumulative distributions of per-job,
per-input, per-user, and per-VC overlaps. Surprisingly, we see that
most of the jobs have 10s to 100s of subgraphs that overlap with one
or more other jobs. This suggests that there are significant oppor-
tunities to improve the data pipelines and reduce the redundancy.
Apart from reusing computations, one could also consider sharing
computations in the first place. We make a similar observation from
per-input overlap distribution, where we see that more than 90% of
the inputs are consumed in the same subgraphs at least twice, 40%
are consumed at least five times, and 25% are consumed at least ten
times. In terms of users, we again see 10s to 100s of overlaps per
user, with top 10% having more than 1500 overlaps. These heavy
hitters could be consulted separately. Lastly, for VCs, we see at least
three groups having similar number of overlaps. Overall, computa-
tion overlap is widespread across jobs, inputs, users, and VCs, and
it needs to be addressed in a systematic manner.

2.3 Operator-wise Overlap

We now analyze the operator-wise overlap, i.e., the root operator of
the overlapping computation subgraph. Figure 4(a) shows the oper-
ator distribution for the overlaps shown in Figure 3. We can see that
sort and exchange (shuffle) constitute the top two most overlapping
computations. This is interesting because these two are typically
the most expensive operations as well and so it would make sense to
reuse these. In contrast, the next three most overlapping operators,
namely Range (scan), ComputeScalar, and RestrRemap (usually col-
umn remapping), are expected to be much cheaper to re-evaluate,
since they are closer to the leaf-level in a query tree. Among other
operators of interest, we see group-by aggregate, joins, and user
defined functions (including process, reduce, and even extractors)
having significant overlaps.

Figures 4(b)- 4(d) show the cumulative overlap distribution for
three of the operators, namely shuffle, filter, and user-defined pro-
cessor. Even though we show the shuffle operator to be more over-
lapping, only a small fraction of the shuffles have high frequency.
This changes for the filter operator, where the cumulative distri-
bution grows more flat, meaning that more number of filters have
higher frequency. Finally, for user defined operators in Figure 4(d),
the curve is more flatter. This is because user defined operators are
likely to be shared as libraries by several users and teams.

2.4 Impact of Overlap

In the previous section, we saw the computation overlaps in dif-
ferent clusters, VCs, and operators. We study the impact of these
overlaps along several dimensions. Figures 5(a)–5(d) show the cumu-
lative distributions of frequency, runtime, output size, and relative
costs (i.e., view-to-query cost ratio) of the overlapping computa-
tions in one of our largest business units (same as from Section 2.2).

In terms of frequency, there are close to a million computations
appearing at least twice, with tens of thousands appearing at least
10 times, few hundreds appearing at least 100 times, and some
appearing at least 1000 times — all in one single day! The average

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104

Fr
ac

tio
n

of
 J

ob
s

(a) Overlap by jobs

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105 106 107
Fr

ac
tio

n
of

 In
pu

t S
et

s

(b) Overlap by inputs

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105 106 107

Fr
ac

tio
n

of
 U

se
rs

(c) Overlap by users

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105 106

Fr
ac

tio
n

of
 V

C
s

(d) Overlap by VCs

Figure 3: Cumulative distributions of overlap in one of the largest business units.

 0.001

 0.01

 0.1

 1

 10

 100

S
or

t
E

xc
ha

ng
e

R
an

ge
S

ca
la

r
R

es
trR

em
ap

Fi
te

r
H

as
hG

bA
gg

S
tre

am
G

bA
gg

P
ro

ce
ss

S
po

ol
M

er
ge

Jo
in

S
eq

ue
nc

e
H

as
hJ

oi
n

U
ni

on
A

ll
C

om
bi

ne
V

irt
ua

lD
at

as
et

R
ed

uc
e

E
xt

ra
ct

G
bA

pp
ly

To
p

Lo
op

sJ
oi

n
O

ut
pu

t
Ta

bl
eS

ca
n

W
nd

ow
N

O
P

W
rit

e

P
er

ce
nt

ag
e

of
 S

ub
gr

ap
hs

(a) Operator breakdown

 0.5

 0.6

 0.7

 0.8

 0.9

 1

101 102 103 104

Fr
ac

tio
n

of
 S

hu
ffl

es

(b) Shuffle

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 102 103

Fr
ac

tio
n

of
 F

ilt
er

s

(c) Filter

 0.5

 0.6

 0.7

 0.8

 0.9

 1

101 102 103

Fr
ac

tio
n

of
 P

ro
ce

ss
or

s

(d) Processor

Figure 4: Operator-wise overlaps in 4(a); Per-operator cumulative distributions of overlap in 4(b)– 4(d).

 0.5

 0.6

 0.7

 0.8

 0.9

 1

101 102 103 104

Fr
ac

tio
n

of
 V

ie
w

s

(a) Frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105

Fr
ac

tio
n

of
 V

ie
w

s

(b) Runtime (s)

 0

 0.2

 0.4

 0.6

 0.8

 1

10 410 310 210 1 100 101 102 103 104 105 106

Fr
ac

tio
n

of
 V

ie
w

s

(c) Size (GB)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Fr
ac

tio
n

of
 V

ie
w

s

(d) View-Query Cost Ratio

Figure 5: Quantifying the impact of overlap in one of the largest business units.

overlap frequency however is 4.2 (median 2, 75th percentile 3, 95th

percentile 14, and 99th percentile 36). Thus, computation overlap
frequencies are heavily skewed and we need to be careful in picking
the views to materialize.

In contrast to the frequency, the runtime and the output size dis-
tributions have much less skew. Interestingly, 26% of the overlaps
have runtime of 1s or less, indicating there are opportunities to
prune many of the reuse candidates, while 99% of the overlaps have
runtime below 1000s . In terms of output size, 35% of the overlaps
have size below 0.1MB, which is good for storage space, and 99%
have size below 1TB. Lastly, view-to-query cost ratio is an inter-
esting metric to understand the relative importance of a view to
a query. We note that 46% of the overlapping computations have
view-to-query cost ratio of 0.01 (1%) or less. These overlaps will
not result in significant savings in latency, although their cumula-
tive resource consumption savings may still be of interest to the
customer. Overall, this is again a highly skewed distribution with
only 23% of the overlaps having a view-to-query cost ratio of more
than 0.1, and just 4% having a ratio of more than 0.5.

3 REUSE OVER RECURRING WORKLOADS

Our goal is to materialize overlapping computations over recur-
ring jobs in SCOPE, i.e., jobs that appear repeatedly (hourly, daily,
weekly, or monthly), have template changes in each instance, and
operate over new data each time. Prior works require the workload
to be known a-priori in order to analyze the workload and select
the views to materialize. However, with recurring jobs changing
and running over new data in each instance, the exact workload is
not available until the next recurring instance, e.g., the next hour.
Running the workload analysis to select the views to materialize
within the same recurring instance, before running the actual jobs,
is simply not possible.

To handle recurring jobs, we collect a combination of two sig-
natures for each subgraph computation: one which identifies the
computation precisely and one which normalizes the precise sig-
nature by the recurring changes, e.g., data/time predicates, input
names, etc. These signatures are created during compilation and
they are similar to plan signatures or fingerprints in prior works [1].

CloudViews: View Materialization & Reuse

SCOPE Workload
Repository

Compile-time
query plans

Run-time
statistics

Query subgraphs
with features

Materialized
View selection

Interesting
subgraphs

Query
annotations

Enabled by
VC admin

Unmodified scripts

1. Check annotations
for each subgraph

2. Check if the subgraph is already
materialized in the view repository

3. Add an expression using view
(still let optimizer pick the best expression)

Materialized view
repository

4. Materialize subgraph as
part of query processing

No matching
annotations

match

exists !exists

view

view

120205167609!Recurring Annotation BuildView D:\viewPath.ss
120205167609!Recurring Annotation MatchView D:\viewPath.ss

CloudViews Analyzer CloudViews Runtime

Figure 6: CloudViews System Architecture.

Figure 7: Use of precise and normalized signatures for com-

putation reuse over recurring workloads.

However, we extended the precise signature to further include the
input GUIDs, any user code, as well as any external libraries used
for custom code. The normalized signature ensures that we capture
a normalized computation that remains the same across different
recurring instances. Figure 7 shows the use of these two signatures
in our approach. We analyze any recurring instance from the work-
load history and select frequent computations (views) based on
their precise signatures (Step 1), and collect their corresponding
normalized signatures into our metadata service (Step 2). This anal-
ysis needs to be run periodically, only when there is a change in
the workload, thereby removing the need to run workload analysis
within each recurring instance. Later during runtime, we material-
ize subgraphs based on their normalized signatures (Step 3), but we
also record the precise signature of each of the materialized view
into the physical path of the materialized files (Step 4). The precise
signatures are used to match future computations for reuse (Step
5), as well as for expiring a materialized view (Step 6). In summary,
the normalized signature identifies subgraphs across recurring in-
stances (for materialization) while the precise signature matches

subgraph within a recurring instance (for reuse). Together, they
make computation reuse possible over recurring workloads.

4 CLOUDVIEWS OVERVIEW

In this section, we give a brief overview of the CloudViews system.
Our key goals derived from our engagement with product teams
are as follows:

(1) Automatic:We need minimal manual intervention, since it is
really hard for developers to coordinate and reuse overlapping com-
putations amongst themselves. Thus, overlapping computations
should be detected, materialized, reused, and evicted automatically.
(2) Transparent: With hundreds of thousands of jobs, it is simply
not possible to make changes in user scripts or their libraries.
(3) Correct: Computation reuse should not introduce incorrect re-
sults, i.e., data corruption. This is especially challenging due to the
presence of parameters, users code, and external libraries.
(4) Latency-sensitive: SCOPE users cannot afford to slow down
their data pipelines and hence computation reuse should offer bet-
ter or same performance. This requires accurate estimates on the
cost/benefit of materialized views, and the optimizer should still be
able to discard a view in case it turns out to be too expensive.
(5) Maximize reuse: The obvious goal is to do the computation
reuse wherever possible. This is hard because overlapping jobs may
arrive concurrently and so views materialized in one job may not
end up being reused.
(6) Debuggability: SCOPE has a rich debuggability experience and
computation reuse should preserve that. Specifically, customers
(and operations team) should be able to replay the job, see which
materialized views are created or used, trace the jobs which created
any of the views, and even drill down into why a view was selected
for materialization or reuse in the first place.

(7) Reporting: Finally, we need to report the impact of computa-
tion reuse on job performance, i.e., the storage costs and runtime
savings, as well as make all metadata related to the overlapping
computations queryable.

Traditional materialized view technologies typically have three
components, an offline view selection component, an offline view
building component, and an online view matching component. In
our approach, we have two online components: a periodic workload
analyzer to mine overlapping computations, and a runtime engine
to materialize and reuse those computations.

Figure 6 shows the high-level architecture of CloudViews. The
left side shows the periodic workload analyzer that is used to ana-
lyze the SCOPE workload repository. Admins can choose to include
or exclude different VCs for analysis. The output of this analysis is
a set of annotations telling future jobs the subgraph computations
that must be materialized and reused. The right side of Figure 6
shows the runtime component of CloudViews. Here, each incom-
ing job can be processed in one of three ways: (i) exactly same
as before in case none of the job subgraphs are materialized or
are deemed to be too expensive by the optimizer, (ii) modified job
graph that reads from a materialized view (i.e., there is a matching
subgraph annotation and it is materialized) and reading from the
materialized view is considered more efficient than recomputing it
by the optimizer, and (iii) modified job graph that spools and mate-
rializes the output of a subgraph (i.e., there is a matching subgraph
annotation but it is not materialized). While the analyzer part of
CloudViews could be triggered explicitly by the user or scheduled
as another recurring job, the runtime part is triggered by providing
a command line flag during job submission. The job scripts of the
end users remain unchanged.

5 CLOUDVIEWS ANALYZER

In this section, we describe the analyzer component of Cloud-
Views. The key features of this component include: (i) providing
feedback loop for runtime statistics, (ii) picking the physical design
for the selected views to materialize, (iii) determining the expiry of
a materialized view, and (iv) providing a user interface to tune and
visualize the workload analysis. We describe each of these below.

5.1 The Feedback Loop

Picking the right set of views to materialize is a hard problem. State-
of-the-art approaches rely on what-if optimization to estimate the
expected improvements if the view were to be materialized [2].
Unfortunately, the optimizer cost estimates are often way off due
to the presence of complex DAGs and user code. The problem
becomes even more severe in a distributed cloud setting where
virtual hardware and scheduling issues make it even harder to
model the actual gains in terms of job latencies. As a result, the
actual improvements from a materialized view may be much lower
while its actual materialization costs may be much higher than
the estimated ones. Thus, we need higher confidence on which
views to materialize and do not want to materialize a view which
later ends up not being used, thereby wasting customer money in
a job service. This gets further challenging with dynamic resource
allocation within a job graph as well as with opportunistic resource
allocation in SCOPE [8].

Figure 8: Feedback loop for computation reuse.

We handle the above issues by providing a feedback loop that rec-
onciles compile-time estimates with run-time statistics, as depicted
in Figure 8. Our feedback mechanism goes beyond learning from
the same query, as in LEO [45], and considers arbitrary fine-grained
commonalities across multiple jobs. We do this by enumerating all
possible subgraphs of all jobs seen within a time window in the past,
e.g., a day or a week, and finding the common subgraphs across
them. Though this is more restricted than considering generalized
views2, the subgraphs considered have actually been used in the
past (likely to be also used in the future) and there are runtime
statistics available from those previous runs (can cost them more
accurately).

In order to use the runtime statistics from the previous runs, we
connect the job data flow (one which gets executed on a cluster of
machines) back to the job query graph (the tree representation of
the input user query). We do this by linking the operators executed
at every stage in the data flow to operators in the query graph.
Then, for every query subgraph, we extract corresponding runtime
statistics from the data flow. These include latency (time taken to
execute the subgraph), cardinality (number of output rows in the
subgraph), data size (in bytes), and resource consumption (CPU,
memory, parallelism, IO, etc.). In cases where several operators
are pipelined in a data flow, we attribute runtime statistics such as
resource consumption to individual operators, e.g., by sub-dividing
the total resource consumption of all pipelined operators based on
the exclusive runtime of each operator in the pipeline.

Our feedback loop has several key benefits. First, there is an
inevitable duplication of analysis in user scripts, due to common
data preparation needed in multiple analyses or simply due to the
fact that developers often start from someone else’s script before
adding their own logic. With the feedback loop in our job service,
users do not have to worry about de-duplicating their scripts; the
system takes care of doing it automatically at runtime. Second,
the runtime statistics provide more predictable measures of view
materialization costs and benefits, thereby giving the customer a
better idea of how much he will pay and how much he will save
with this feature. Third, the feedback loop makes it more likely that
the selected (and materialized) subgraphs will actually end up being
used in future jobs, in contrast to picking materialized views based
on cost estimates and later finding them not useful if the estimates
turn out to be incorrect. Fourth, our feedback loop considers job
subgraphs without considering merging two or more subgraphs, as
in more general view selection. This ensures that materializing a
view never requires additional computation (and hence additional
money) than that would anyways be done by a job using that view.

2QueriesQ1,Q2 reading attributes (A, B) and (A, C), respectively, would generate a
view (A, B, C) as candidate, even though it is neither a subgraph of Q1 nor of Q2.

And finally, the runtime statistics observed from the subgraphs of
one job get shared across all future queries having any of those
subgraphs. In fact, for any new job that comes in, the system may
already know the costs of its several subgraphs and may decide to
not recompute them.

5.2 Selecting Subgraphs to Materialize

As mentioned before, we simplify the view selection problem by re-
stricting ourselves to common subgraphs. Although this is more lim-
ited than generalized view selection, we are able to capture precise
utility and cost estimates, since the subgraphs have been executed
in the past. In addition, during query rewriting we simply scan the
materialized view, without incurring any other post-processing,
and hence the gains are more predictable.

We consider two kinds of approaches to select the subgraphs to
materialize:
(i) selecting the top-k subgraphs using one or more heuristics, e.g.,
total subgraph utility, or total utility normalized by storage cost, or
limiting to at most one subgraph per-job, etc. The system allows
users to plug in custom heuristics to narrow down to the subgraphs
of their interest.
(ii) packing the most interesting subgraphs (or subexpressions) given
a set of constraints, e.g., storage constraints, view interaction con-
straints, etc. We investigated the subexpression packing problem
in more details in a companion work [24].

5.3 Physical Design

One of the early lessons we learned in this project was the impor-
tance of view physical design. The physical design of materialized
views is typically not paid much attention, i.e, views and their phys-
ical design are typically not selected at the same time. However, we
observed that materialized views with poor physical design end up
not being used because the computation savings get over-shadowed
by any additional repartitioning or sorting that the system needs
to do. This happens because with massively large datasets and mas-
sively parallel processing in SCOPE, repartitioning and sorting are
often the slowest steps in the job execution.

CloudViews, therefore, pays close attention to view physical
design. To do so, we extract the output physical properties (par-
titioning type, partitioning columns, number of partitions, sort
columns, sort direction) of each of the subgraph while enumerating
them. The output physical properties are good hints for view phys-
ical design as they are expected by subsequent operators in the job
graph. In case of no explicit physical properties at the subgraph root,
we infer them from the children, i.e., we traverse down until we hit
one or more physical properties. Depending on how an overlapping
subgraph is used in different jobs, there may be multiple sets of
physical properties for the same subgraph. The default strategy is
to pick the most popular set. However, in case of no clear choice,
we treat multiple physical designs (of the same view) as different
views and feed them to the view selection routine.

5.4 Expiry and Purging

Although storage is cheap, the storage space used by materialized
views still needs to be reclaimed periodically. A simple heuristic is
to remove all views from the previous recurring instance. However,

discussions with our customers revealed that output of hourly
jobs could also be used in weekly jobs or monthly jobs. Therefore,
removing views after each hour/day could be wasteful. A better
option is to track the lineage of the inputs of the view, i.e., for each
of the view input, check the longest duration that it gets used by any
of the recurring jobs. The maximum of all such durations gives a
good estimate of the view expiry. Apart from using standard SCOPE
scripts, this type of lineage tracking could also be facilitated using
provenance tools such as Grok [43] and Guider [35], or Goods [21].
The view expiry thus obtained is encoded into the physical files, and
our Storage Manager takes care of purging the file once it expires.

Cluster admins could also reclaim a given storage space by run-
ning the same view selection routines as described in Section 5.2
but replacing the max objective function with a min, i.e., picking
the views with minimum utility. In the worst case, the materialized
view files can be simply erased from the cluster. Both of the above
operators, however, require cleaning the views from the metadata
service first before deleting any of the physical files (to ensure that
jobs consuming any of those inputs do not fail).

5.5 User Interfaces

CloudViews provides a few ways to interact with the workload
analyzer. First, there is a command line interface to run the analyzer
over user specific cluster, VCs and time ranges. Users can also pro-
vide their custom constraints, e.g., storage costs, latency, CPU hours,
or frequency, to filter down the overlapping computations. Then,
there is a Power BI [39] dashboard to look at various summaries
from computation overlap analysis, as well as drill down into the
top-100 most overlapping computations in more detail. Together,
the goal is to help users understand the computation overlap in
their workloads and to tailor computation reuse for their needs.

6 CLOUDVIEWS RUNTIME

In this section, we describe the various components that make com-
putation reuse possible during query processing. We collectively
refer to them as the CloudViews runtime, which consists of: (i) a
metadata service to query the relevant overlaps in each incoming
job, (ii) an online view materialization capability to materialize
views as part of query processing, (iii) a synchronization mecha-
nism to prevent concurrent jobs materializing the same view, (iv) an
early materialization technique to publish a materialized view even
before the job producing it completes, (v) automatic query rewriting
to use materialized views wherever possible, and (vi) hints to the
job scheduler in order to maximize the computation reuse.

6.1 Metadata Service

The goal of the metadata service is to provide the lookup for over-
lapping computations and to coordinate the materialization and
reuse of those computations. Recall that we have an online setting,
i.e., data batches and jobs arrive continuously, and hence view ma-
terialization and reuse is a dynamic activity. Therefore, instead of
simply looking up the views in the compiler, multiple SCOPE com-
ponents interact with the metadata service at runtime, as illustrated
in Figure 9.

First, the compiler asks the metadata service for overlapping
computations (views) for a given job J (Step 1). The naïve approach

CloudViews Metadata Service

1

2

3

4

5

6

Compiler Optimizer JobManager

Get relevant
views for a job J

Propose to materialize
a view Vs, with precise
signature s

Report successful
materialization of Vs

List of normalized
signatures

Exclusive lock
Success/Failure

Lock
Release
ACK

Figure 9: CloudViews metadata service interactions with

different SCOPE components.

would be for the compiler to lookup each subgraph individually to
check whether or not this is an overlapping computation. However,
the number of lookup requests can explode since SCOPE job graphs
can be quite large, thereby leading to higher compilation overhead
as well as higher throughput requirements from the metadata ser-
vice. Instead, we make one request per-job and fetch all overlaps
that could be relevant for that job. This is done by creating an in-
verted index as follows. For each overlapping computation instance,
we extract tags from its corresponding job metadata. We normalize
the tags for recurring jobs and create an inverted index on the tags
to point to the corresponding normalized signatures. The metadata
service returns the list of normalized signatures relevant to J to the
compiler (Step 2). The signatures returned by the metadata service
may contain false positives, and the optimizer still needs to match
them with the actual signatures in the query tree.

Second, when the optimizer tries to materialize an overlapping
computation, it proposes the materialization to the metadata service
(Step 3). The metadata service tries to create an exclusive lock to
materialize this view. Due to large number of concurrently running
jobs, the same view could be already materialized by another job,
i.e., the lock already exists. In this case, the service returns a failure
message, otherwise, it returns success (Step 4). Note that we mine
the average runtime of the view subgraph from the past occur-
rences, and use that to set the expiry of the exclusive lock. Once
the exclusive lock expires, and if the view is still not materialized,
another job could try to create the same materialized view. This
gives us a fault-tolerant behavior for view materialization.

Finally, the job manager reports the successful materialization of
a view to themetadata service (Step 5) and the service acknowledges
the lock release (Step 6). The metadata service now makes the
materialized view available for other jobs to reuse, i.e., it may appear
the next time the compiler asks for relevant views for a job (Step1).

We deployed our metadata service using AzureSQL as the back-
end store. The metadata service periodically polls for the output
of CloudViews analyzer and loads the set of selected overlapping
computations whenever new analysis is available. We purge expired
computations at regular intervals.

6.2 Online Materialization

Traditional materialized views require an offline process where
the database administrator is responsible to first create all relevant
materialized views, i.e., the preprocessing step, before the data-
base becomes available for running the query workload. This is
not possible with recurring jobs which run in tight data pipelines
with strict completion deadlines, where there is little room to do

Figure 10: Illustrating online materialization and query

rewriting mechanisms in the SCOPE query optimizer.

the preprocessing for creating the materialized views. Preprocess-
ing blocks the recurring jobs, thereby causing them to miss their
completion deadlines. Recurring jobs also have data dependency
between them, i.e., the result of one recurring job is used in subse-
quent recurring jobs. Thus, missing completion deadline for one
recurring jobs affects the entire data pipeline.

We introduce a mechanism for creating and reusing materialized
views as part of the query processing, as depicted in Figure 10. Af-
ter fetching the relevant normalized signatures from the metadata
service, the compiler supplies them as annotations to the query
optimizer. The compiler also preserves the annotations as a job
resource for future reproducibility. The optimizer first checks for
all reuse opportunities in the plan search phase before trying to
materialize one or more views in a follow-up optimization phase,
shown in lower half of Figure 10. This ensures that views already
materialized (and available) are not attempted for materialization.
During follow-up optimization, the optimizer checks whether the
normalized signature of any of the subgraphs matches with the
ones in the annotation. We match the normalized signatures in a
bottom-up fashion (materializing smaller views first as they typi-
cally have more overlaps) and limit the number of views that could
be materialized in a job (could be changed by the user via a job
submission parameter). In case of a match, the optimizer proposes
to materialize the view (Step 3 in Figure 9). On receiving success
from the metadata service, the optimizer adjusts the query plan
to output a copy of the sub-computation to a materialized view,
while keeping the remainder of the query plan unmodified as before.
The new output operator also enforces the physical design mined
by the analyzer for this view. The optimizer takes care of adding
any extra partitioning/sorting operators to meet those physical
property requirements. The optimizer stores the precise signature
of each materialized view as well as the ID of the job producing
the materialized view (for tracking the view provenance) into the
physical path of the materialized file.

The salient features of our approach are as follows. First, we
introduce a mechanism to create materialized views with minimal
overhead as part of the query processing, without requiring any up-
front preprocessing that would block the recurring queries. Second,
our approach causes the first query that hits a view to materialize

it and subsequent queries to reuse it wherever possible. As a result,
we materialize views, and hence consume storage, just when they
are to be needed, instead of creating them a priori long before they
would ever be used. Third, we do not need to coordinate between
the query which materializes the view (as part of its execution),
and the queries which reuse that materialized view; in case of mul-
tiple queries arriving at the same time, the one which finishes first
materializes the view. Fourth, in case there is a change in query
workload starting from a given recurring instance, then the view
materialization based on the the previous workload analysis stops
automatically as the signatures do not match anymore. This avoids
paying for and consuming resources for redundant views that are
not going to be used after all. This also indicates that it is time to re-
run the workload analysis. Finally, our approach does not affect any
of the user infrastructure in their analytics stack. This means that
the user scripts, data pipelines, query submission, job scheduling,
all remain intact as before.

For traditional users with enough room for upfront viewmaterial-
ization, e.g., weekly analytics, CloudViews still provides an offline
view materialization mode. In this mode, the optimizer extracts
the matching overlapping computation subgraph while excluding
any remaining operation in the job. The resulting plan materializes
only the views and could be executed offline, i.e., before running
the actual workload. The offline mode can be configured at the VC
level in the metadata service, and later the annotations passed to
the optimizer are marked either online or offline depending on the
metadata service configuration.

6.3 Query Rewriting

To rewrite queries using materialized views, we added an additional
task in the Volcano style plan search [16]. This additional task, as
shown in the upper half of Figure 10, matches the normalized sig-
natures retrieved from the metadata service with the normalized
signatures of each of the query subgraphs in a top-down fashion,
i.e, we match the largest materialized views first. In case of a match,
the optimizer matches the precise signature as well. Only if the pre-
cise signature matches then the materialized view could be reused.
In such a scenario, the optimizer adds an alternate subexpression
plan which reads from the materialized view. We do not limit the
number of materialized views that could be used to answer a query.
Once all applicable materialized views have been added as alternate
subexpressions, the optimizer picks the best plan based on the cost
estimates, i.e., a materialized view may end up not being used if
its read cost is too high. The plan that reads from the materialized
view also loads the actual statistics (for that sub-computation) and
propagates those statistics up the query tree. This gives more con-
fidence in deciding whether the plan using the materialized view
is actually a good one or not. Overall, we provide fully automatic
query rewriting using views, with zero changes to user scripts.

6.4 Synchronization

We have two goals in terms of synchronization: (i) build-build syn-
chronization, i.e., not having multiple jobs materialize the same
view, and (ii) build-use synchronization, i.e., reuse a computation as
soon as it is materialized. We handle the build-build synchroniza-
tion by trying to reuse computations before trying to materialize

them, as described in Section 6.2. For concurrent jobs, we also create
exclusive locks via the metadata service, as described in Section 6.1.
Given that the service is backed by AzureSQL, it provides consistent
locking, and only a single job can actually materialize a view at
a time. To handle the build-use synchronization, we modified the
SCOPE job manager to publish the materialized view as soon as it is
available. This means that the materialized view output is available
even before the job that produces it finishes. We refer to this as
early materialization. Early materialization is a semantic change
as it breaks the atomicity of SCOPE jobs, however, it very useful
because the views could be a much smaller subgraph of the overall
job graph. Furthermore, the materialized view is not a user output,
but is rather treated as a system output, and therefore we do not
affect the user contract. Finally, early materialization also helps in
case of jobs failures, since the job can restart from the materialized
view now, i.e., early materialization acts as a checkpoint.

6.5 Job Coordination

The perfect scenario for computation reuse is when one of the jobs
with overlapping computation is scheduled before others, so that
the view could be computed exactly once and reused by all others.
However, in reality, multiple jobs containing the same overlapping
computation could be scheduled concurrently. In this case, they will
recompute the same subgraph and even attempt to materialize it
(though only one will prevail). We mitigate this problem by reorder-
ing recurring jobs in the client job submission systems3. To do this,
in addition to selecting the interesting computations to materialize,
the CloudViews analyzer also provides the submission order of
the recurring jobs, that contain those computations, which will
give the maximum benefit. We do this by grouping jobs having the
same number of overlaps (job with multiple overlaps can appear
in multiple groups), and picking the shortest job in terms of run-
time, or least overlapping job in case of a tie, from each group. The
deduplicated list of above jobs will create the materialized views
that could be used by all others, and so we run them first (ordered
by their runtime and breaking ties using the number of overlaps).
Such an ordering can be enforced using the SCOPE client-side job
submission tools. Future work will look into how view-awareness
could be handled centrally by the job scheduler itself.

7 EVALUATION

In this section, we present an experimental evaluation of Cloud-
Views. We break down our evaluation into three parts, answering
each of the following questions: (i) what is the impact on perfor-
mance over production jobs at Microsoft? (ii) what is the impact on
traditional TPC-DS benchmark? and (iii) what are the overheads
involved in CloudViews? Below we address each of these.

7.1 Impact on Production Jobs

We first present performance evaluation results from our produc-
tion clusters. Given the capacity constraints and costs involved in
running experiments on these clusters, we carefully picked a small
set of job workload for our evaluation, as described below.

3There are multiple client side tools developed and maintained by different business
units at Microsoft to create workflows on top of our job service.

Figure 13: TPC-DS queries: percentage runtime improvements.

Then, there is compile time overhead to lookup the metadata
service and to do additional work during query optimization. We
measured the latency added due to metadata service lookup and it
turned out to be 19ms on average with a single thread and 14.3ms
on average when using 5 threads in the metadata service. This
is reasonable given that the overall compilation time for TPC-DS
queries was in the range of 1-2 minutes. Likewise, we measured
the query optimization overhead with CloudViews over TPC-DS
queries. Interestingly, while the optimization time increased by 28%
on average when creating a materialized view, the optimization
time decreased by 17% on average when using the view. This is
because the query tree becomes smaller when using the view and
so any follow-up optimizations become faster.

8 LESSONS LEARNED

In this section, we outline experiences from deploying CloudViews
to our production clusters. The CloudViews analyzer is available
as an offline tool for VC admins, while the CloudViews runtime
ships with the most recent SCOPE release. The technology is cur-
rently in preview and available to our customers in an opt-in mode,
i.e., each VC admin can enable CloudViews either for the entire
VC or for certain jobs in that VC. Eventually, the goal is to make
CloudViews opt-out, i.e., overlapping computations are reused
wherever possible, but customers can explicitly turn it off in special
cases, e.g., SLA sensitive jobs. Below we summarize the key lessons
learned from the CloudViews project.

Discovering hidden redundancies.Data analytics has hidden re-
dundancies across users (or sometimes even for the same user), and
it is really hard to detect and mitigate these redundancies manually
at scale. Most of the customers we talked to already expected to
have computation overlaps in their workloads, and it was interest-
ing for them to see the exact jobs and the overlapping computations
present in them. While some of the customers were willing to take
the pain of manually modifying their scripts to prevent overlaps,
most preferred to use our automatic reuse approach instead.

Improving data sharing across VCs. SCOPE workloads are typi-
cally organized as data pipelines, with dependencies across VCs that
are fulfilled via explicit data materialization. With CloudViews, we
could help customers detect the most efficient of these materializa-
tions, better than those from the manual best effort and that could
speedup downstream processing. This is an interesting side-effect
of CloudViews and would be a subject for future work.

Extracting static computations. In many cases, we saw that
there were overlapping computations even across multiple recur-
ring instances of the same job, i.e., even with different inputs. This
was because portions of the job were unchanged across multiple
instances, i.e., the inputs to those portions were still the same while
other portions of the job had different inputs. CloudViews was
therefore effective in detecting such static computations across
multiple job instances.

Reusing existing outputs. In several other cases, a subgraph
rooted at an output operator was common across jobs. This means
that multiple jobs were producing the same output without ever
realizing it. CloudViews was helpful to consolidate such redun-
dant outputs by materializing the common computation once and
reusing it wherever possible; we separately asked the owners of
those jobs to remove the redundant output statements in their jobs.

Discarding redundant jobs. In multiple cases, entire jobs were
detected as overlapping. This was because of two reasons: (i) given
that jobs are recurring, some of the jobs end up scheduled more
frequently than the new data arrival, and (ii) there were rare cases
of plain redundancy where multiple users unknowingly submit the
same job. CloudViews helped in detecting such redundancies.

Utility of view physical design. Our workloads had explicit data
dependencies across jobs, but the users had little idea on how to
set the physical designs of the output from one job that needs to be
consumed by another job. With CloudViews, we not only capture
many of these dependencies across jobs, but also pick the best
physical designs for those dependency outputs.

Better reliability.Bymaterializing the shared computations across
jobs, CloudViews not only provides better performance, but it also
reduces the failure rates as fewer tasks are scheduled in subsequent
jobs hitting the same overlapping computation. Thus, view mate-
rialization acts as a checkpoint providing better reliability. This is
further useful when the first job that hits an overlapping computa-
tion fails, since the overlapping portion may be already materialized
due to early materialization in CloudViews runtime.

Better cost estimates. As mentioned before, view materialization
improves the cost estimates since we can collect exact statistics from
the materialized output. Given that we materialize computations
that are frequent as well as expensive, better estimates over those
computations are even more significant.

User expectations. It was important to manage the user expecta-
tions in CloudViews project. This includes VC admin expectations

to see the cost of overlaps in their workload and expected gains
with CloudViews, end-user expectations to know whats going
on in their job and reacting accordingly, and the operational sup-
port team expectations to be able to reproduce and debug the jobs
submitted with CloudViews enabled.
Updates & privacy regulations. Finally, any updates in the input
data results in a different precise signature, thus automatically
invaliding any older materialized view for reuse. This is crucial for
privacy reasons when the customers explicitly request to stop using
their personal data, as provisioned in the new EU GDPR [13].

9 RELATEDWORK

Traditional materialized views. Selecting views to materialize
has been a long standing topic of research in databases. Given a
set of queries, view selection deals with the problem of selecting a
set of views to materialize to minimize some cost function (such
as query evaluation and/or view maintenance cost) under some
constraints (e.g., space budget) [33]. Several approaches have been
proposed, especially in the context of data warehouses [19, 46] and
data cubes [22]. These include modeling the problem as a state
optimization problem and using search algorithm to find the most
appropriate view set [46], using AND/OR to model the alterna-
tives in a single DAG [19], or using a lattice to model data cube
operations [22]. MQO [42] is similar to view selection, with the
difference that views are typically only transiently materialized for
the execution of a given query set. [41] describes how to incorpo-
rate MQO with a Volcano-style optimizer. It uses an AND/OR DAG
and proposes heuristic algorithms for choosing intermediate re-
sults to materialize (with no space budget). Recycling intermediate
results has also been proposed in the context of MonetDB [23] and
pipelined query evaluation [36].

Views aremore generic than subexpressions, as they can consider
computation that does not appear in the logical query plan. This
increases the space of possible solutions, and complicates query
containment and answering queries using views [20]. Subexpres-
sion selection has also been considered in SQL Server [53]. Other
related works have looked at common subexpressions within the
same job script [44].

All of the above works have focussed on traditional databases
with few tens to hundreds of queries. In contrast, the SCOPE job
service processes tens of thousands of jobs per cluster per day.
Thus, scalability is a major concern in our setting. In this paper, we
described a system that can create and reuse materialized views at
our scale. In a companion work, we looked at scalable view selection
for our workload size [24].
Computation reuse in big data platforms. Reusing computa-
tion has received particular attention in big data platforms, since
(i) there is a lot of recurring computation, (ii) optimization time is
relatively short compared to the execution time of the jobs, and (iii)
performance and resource benefits can be significant. ReStore [12],
for instance, considers the caching of map-reduce job outputs, given
a space budget. Others have looked at history-aware query optimiza-
tion with materialized intermediate views [38] and at allocating
the cache fairly amongst multiple cloud tenants [28]. Still others
have looked at multi-query optimization in the context of map-
reduce [37, 50]. PigReuse [10] addresses MQO for Pig scripts. It

creates an AND/OR graph using the nested algebra representation
of the Pig jobs, and then uses an ILP solver to select the least costly
plan that can answer all queries. Most of these works consider shar-
ing opportunities only for map and reduce operators, and hence
their applicability is limited. Nectar [18] considers caching inter-
mediate result in a more generalized DAG of operators. It uses
heuristics, based on lookup frequency and the runtime/size of the
intermediate results, to decide on the cache insertion. Still, an inter-
mediate result is typically the output of an operator pipeline (i.e.,
consisting of multiple operators), without considering the outputs
of all possible subexpressions. Finally, Kodiak [30] applies the tradi-
tional database approach of selecting andmaterializing views, while
ensuring that queries meet their SLA and the total view storage is
within a budget.

Our approach is different from the above works, since we con-
sider computation reuse over recurring jobs in a job service that is
always online, i.e., there is no offline phase for view creation. Fur-
thermore, our end-to-end system includes establishing a feedback
loop to ensure that computation reuse is actually effective.
Recurring and progressive query optimization. Both recur-
ring and progressive optimization focus on the problem of inaccu-
rate or missing statistics in query optimization, and not on reusing
common subexpressions across jobs. In particular, recurring op-
timization (such as DB2’s LEO [45] and more recently Scope’s
RoPE [1]) collects actual statistics of query subexpressions at run-
time, and uses them in future executions of the same subexpres-
sion to improve statistics, and hence the quality of the optimized
plan. Progressive optimization has been studied both in the tra-
ditional query optimization setting [7, 26, 34], and for big data
clusters [9, 27]. These systems observe statistics at runtime and
can change the query plan mid-flight in case the observed statis-
tics are significantly different from the estimated ones. We borrow
the concept of signatures from [9] to efficiently identify common
subgraphs across jobs.
Shared workload optimization. A lot of works have looked at
building a common query plan for a set of queries to share oper-
ators, such as scans [40, 54] or joins [32]. A global optimization
approach to find the overall best shared plan is presented in [14].
Work sharing has also been explored in big data systems. Examples
include scan sharing in MapReduce [37], Hive [47] and Pig [51], Un-
like such approaches, we opted to keep each job separate: operator
sharing in pay-as-you-go job services makes billing and accounting
tedious, while it introduces artificial dependencies between jobs,
which become even worse in the case of failures.

10 CONCLUSION

In this paper, we presented a case for computation reuse in an ana-
lytics job service. We motivated the problem via a detailed analysis
from production SCOPE workloads at Microsoft, and described the
CloudViews system for automatically reusing overlapping compu-
tations in SCOPE. The CloudViews system addresses several novel
challenges including recurring workloads, establishing a feedback
loop, and an online setting. Overall, computation overlap is a prob-
lem across almost all business units at Microsoft and CloudViews
can automatically reuse computations wherever possible, resulting
in significant potential cost savings.

REFERENCES

[1] Sameer Agarwal, Srikanth Kandula, Nicolas Bruno, Ming-Chuan Wu, Ion Stoica,
and Jingren Zhou. 2012. Re-optimizing data-parallel computing. In NSDI.

[2] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. 2000. Automated
Selection of Materialized Views and Indexes in SQL Databases. In VLDB. 496–505.

[3] Amazon Athena 2018. https://aws.amazon.com/athena/. (2018).
[4] Amazon RDS 2018. https://aws.amazon.com/rds/. (2018).
[5] Azure Data Lake 2018. https://azure.microsoft.com/en-us/solutions/data-lake/.

(2018).
[6] Azure SQL 2018. https://azure.microsoft.com/en-us/services/sql-database/.

(2018).
[7] Shivnath Babu, Pedro Bizarro, and David J. DeWitt. 2005. Proactive Re-

optimization. In SIGMOD Conference. 107–118.
[8] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping Qian,

Ming Wu, and Lidong Zhou. 2014. Apollo: Scalable and Coordinated Scheduling
for Cloud-Scale Computing. In OSDI.

[9] Nico Bruno, Sapna Jain, and Jingren Zhou. 2013. Continuous Cloud-Scale Query
Optimization and Processing. In VLDB.

[10] Jesús Camacho-Rodríguez, Dario Colazzo, Melanie Herschel, Ioana Manolescu,
and Soudip Roy Chowdhury. 2016. Reuse-based Optimization for Pig Latin. In
CIKM.

[11] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Darren Shakib, Simon
Weaver, and Jingren Zhou. 2008. SCOPE: easy and efficient parallel processing of
massive data sets. PVLDB 1, 2 (2008), 1265–1276.

[12] Iman Elghandour and Ashraf Aboulnaga. 2012. ReStore: Reusing Results of
MapReduce Jobs. PVLDB 5, 6 (2012).

[13] EU GDPR 2018. https://www.eugdpr.org/. (2018).
[14] Georgios Giannikis, Darko Makreshanski, Gustavo Alonso, and Donald Koss-

mann. 2014. Shared Workload Optimization. PVLDB 7, 6 (2014).
[15] Google BigQuery 2018. https://cloud.google.com/bigquery. (2018).
[16] Goetz Graefe. 1995. The Cascades Framework for Query Optimization. IEEE

Data Eng. Bull. 18, 3 (1995), 19–29.
[17] Zhongxian Gu, Mohamed A. Soliman, and Florian M. Waas. 2012. Testing the

Accuracy of Query Optimizers. In DBTest. 11:1–11:6.
[18] Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A. Thekkath, Yuan

Yu, and Li Zhuang. 2010. Nectar: Automatic Management of Data and Computa-
tion in Datacenters. In OSDI.

[19] Himanshu Gupta and Inderpal Singh Mumick. 2005. Selection of Views to
Materialize in a Data Warehouse. IEEE Trans. Knowl. Data Eng. 17, 1 (2005),
24–43.

[20] Alon Y. Halevy. 2001. Answering queries using views: A survey. VLDB J. 10, 4
(2001).

[21] Alon Y. Halevy, Flip Korn, Natalya Fridman Noy, Christopher Olston, Neoklis
Polyzotis, Sudip Roy, and Steven Euijong Whang. 2016. Goods: Organizing
Google’s Datasets. In Proceedings of the 2016 International Conference on Manage-
ment of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01,
2016. 795–806.

[22] Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman. 1996. Implement-
ing Data Cubes Efficiently. In ACM SIGMOD.

[23] Milena Ivanova, Martin L. Kersten, Niels J. Nes, and Romulo Goncalves. 2009. An
architecture for recycling intermediates in a column-store. In SIGMOD.

[24] Alekh Jindal, Konstantinos Karanasos, Sriram Rao, and Hiren Patel. 2017. Thou
Shall Not Recompute: Selecting Subexpressions to Materialize at Datacenter Scale.
Under Submission (2017).

[25] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, ShravanMatthur Narayana-
murthy, Alexey Tumanov, Jonathan Yaniv, Ruslan Mavlyutov, Íñigo Goiri, Subru
Krishnan, Janardhan Kulkarni, and Sriram Rao. 2016. Morpheus: Towards Auto-
mated SLOs for Enterprise Clusters. In OSDI. 117–134.

[26] Navin Kabra and David J. DeWitt. 1998. Efficient Mid-Query Re-Optimization of
Sub-Optimal Query Execution Plans. In SIGMOD Conference. 106–117.

[27] Konstantinos Karanasos, Andrey Balmin, Marcel Kutsch, Fatma Ozcan, Vuk
Ercegovac, Chunyang Xia, and Jesse Jackson. 2014. Dynamically optimizing
queries over large scale data platforms. In SIGMOD.

[28] Mayuresh Kunjir, Brandon Fain, Kamesh Munagala, and Shivnath Babu. 2017.
ROBUS: Fair Cache Allocation for Data-parallel Workloads. In SIGMOD. 219–234.

[29] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How Good Are Query Optimizers, Really? PVLDB 9, 3
(2015), 204–215.

[30] Shaosu Liu, Bin Song, Sriharsha Gangam, Lawrence Lo, and Khaled Elmeleegy.
2016. Kodiak: Leveraging Materialized Views For Very Low-Latency Analytics
Over High-Dimensional Web-Scale Data. PVLDB 9, 13 (2016).

[31] Guy Lohman. 2014. http://wp.sigmod.org/?p=1075. (2014).
[32] Darko Makreshanski, Georgios Giannikis, Gustavo Alonso, and Donald Koss-

mann. 2016. MQJoin: Efficient Shared Execution of Main-Memory Joins. PVLDB
9, 6 (2016).

[33] Imene Mami and Zohra Bellahsene. 2012. A survey of view selection methods.
SIGMOD Record 41, 1 (2012), 20–29.

[34] Volker Markl, Vijayshankar Raman, David E. Simmen, Guy M. Lohman, and
Hamid Pirahesh. 2004. Robust Query Processing through Progressive Optimiza-
tion. In SIGMOD. 659–670.

[35] Ruslan Mavlyutov, Carlo Curino, Boris Asipov, and Philippe Cudré-Mauroux.
2017. Dependency-Driven Analytics: A Compass for Uncharted Data Oceans. In
CIDR 2017, 8th Biennial Conference on Innovative Data Systems Research, Chami-
nade, CA, USA, January 8-11, 2017, Online Proceedings.

[36] Fabian Nagel, Peter A. Boncz, and Stratis Viglas. 2013. Recycling in pipelined
query evaluation. In ICDE.

[37] Tomasz Nykiel, Michalis Potamias, Chaitanya Mishra, George Kollios, and Nick
Koudas. 2010. MRShare: Sharing Across Multiple Queries in MapReduce. PVLDB
3, 1 (2010).

[38] Luis Leopoldo Perez and Christopher M. Jermaine. 2014. History-aware query
optimization with materialized intermediate views. In ICDE.

[39] Power BI 2018. https://powerbi.microsoft.com. (2018).
[40] Lin Qiao, Vijayshankar Raman, Frederick Reiss, Peter J. Haas, and GuyM. Lohman.

2008. Main-memory scan sharing for multi-core CPUs. PVLDB 1, 1 (2008).
[41] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. 2000. Efficient and

Extensible Algorithms for Multi Query Optimization. In SIGMOD.
[42] Timos K. Sellis. 1988. Multiple-Query Optimization. ACM Trans. Database Syst.

13, 1 (1988), 23–52.
[43] Shayak Sen, Saikat Guha, Anupam Datta, Sriram K. Rajamani, Janice Y. Tsai,

and Jeannette M. Wing. 2014. Bootstrapping Privacy Compliance in Big Data
Systems. In IEEE Symposium on Security and Privacy. 327–342.

[44] Yasin N. Silva, Per-Åke Larson, and Jingren Zhou. 2012. Exploiting Common
Subexpressions for Cloud Query Processing. In ICDE.

[45] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. 2001. LEO
- DB2’s LEarning Optimizer. In VLDB.

[46] Dimitri Theodoratos and Timos K. Sellis. 1997. Data Warehouse Configuration.
In VLDB.

[47] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. 2009. Hive: a
warehousing solution over a map-reduce framework. PVLDB 2, 2 (2009).

[48] TPC-DS Benchmark 2018. http://www.tpc.org/tpcds. (2018).
[49] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer, Eric

Tune, and John Wilkes. 2015. Large-scale cluster management at Google with
Borg. In EuroSys.

[50] Guoping Wang and Chee-Yong Chan. 2013. Multi-Query Optimization in MapRe-
duce Framework. PVLDB 7, 3 (2013).

[51] Xiaodan Wang, Christopher Olston, Anish Das Sarma, and Randal Burns. 2011.
CoScan: Cooperative Scan Sharing in the Cloud. In SOCC. 11:1–11:12.

[52] Jingren Zhou, Nicolas Bruno, Ming-Chuan Wu, Per-Åke Larson, Ronnie Chaiken,
and Darren Shakib. 2012. SCOPE: parallel databases meet MapReduce. VLDB J.
21, 5 (2012), 611–636.

[53] Jingren Zhou, Per-Åke Larson, Johann Christoph Freytag, and Wolfgang Lehner.
2007. Efficient exploitation of similar subexpressions for query processing. In
ACM SIGMOD. 533–544.

[54] Marcin Zukowski, Sándor Héman, Niels Nes, and Peter A. Boncz. 2007. Coopera-
tive Scans: Dynamic Bandwidth Sharing in a DBMS. In VLDB.

