
PerfGuard: Deploying ML-for-Systems without Performance
Regressions

H M Sajjad Hossain, Lucas Rosenblatt, Gilbert Antonius, Irene Shaffer, Remmelt Ammerlaan,
Abhishek Roy, Markus Weimer, Hiren Patel, Marc Friedman, Shi Qiao, Peter Orenberg,

Soundarajan Srinivasan, Vijay Ramani, Alekh Jindal
perfguard@microsoft.com

ABSTRACT

There is newer trend of applying machine learning to systems (ML-
for-Systems), i.e., leveraging the large workloads that are available
in modern cloud applications for improving the system perfor-
mance. However, learning over cloud workloads commonly leads
to over generalizations that do not capture the large variety of
workload patterns. As a result, ML-for-System approaches tend
to augment performance for some subset of the workload, while
risking severe performance regressions in other subsets. In this
paper, we describe the vision of a performance safeguard system,
system, that helps design pre-production experiments for deter-
mining the production readiness of learned models. Concretely, we
consider the big data processing infrastructure at Microsoft and
consider deploying a large set of learned cardinality models for its
query optimizer. We describe an experimentation pipeline that dif-
ferentiates the impact of query plans with and without the learned
cardinality models, selects plan differences that are likely to lead
to most dramatic performance difference, runs a constrained set
of pre-production experiments to empirically observe the runtime
performance, and finally picks the models that are expected to lead
to consistently improved performance for deployment. PerfGuard
enables safe deployment not just for learned cardinality models but
also for a plethora of other ML-for-Systems features.

1 INTRODUCTION

System features often require empirical evidence before they could
be deployed to production. This is especially a pain in modern cloud
services with faster release cycles and bug fix iterations. The typical
practice is to run a subset of production workloads, typically chosen
manually using best effort, in a pre-production environment and
determine the production readiness from the results. Designing
these pre-production experiments is already a challenge, however,
the problem gets worse with the newer trend of applying ML to
systems, i.e., features that incorporate machine learning models to
improve system behavior. These ML-based features can consist of a
large set of models that are often complex and hard to reason about.
As a result, it is difficult to manually design the experiments that
identify the safe-to-deploymodels, i.e., ones which consistently lead
to improved system behavior in production. Therefore, we need to
automate the way we design systems experiments for testing the
newer breed of ML-for-Systems features.

Specifically, consider the cardinality estimation problem. Cardi-
nality is a key statistic used by query optimizers to pick the physical
query plans. However, the accuracy of the current cardinality es-
timators is often way off. For instance, the cardinality estimation
in SCOPE query engine [3] could range anywhere from 10,000

J1

J2

J3

J4

.

.

.

Jn

Production

PerfGuard
Default
Query

Optimizer

Learned
Query

Optimizer

M(J) = {m1(J), m2(J),…}
=>

P’ = {p1’, p2’,…}

P = {p1, p2, …}

Pre-Production
Environment

M
’ A

p
p

lie
dFeedback Loop

J’ ⊆ J

J

M’ ⊆M

Figure 1: An instance of performance safeguarding problem

for deploying a set of learned cardinality models M over a

query workload J seen by a query optimizer.

times under-estimation to 1 million times over-estimation, result-
ing in query plans that are suboptimal both in performance and
in resource consumption. The problem is ubiquitous in all modern
query engines, such as Spark, SQL Server, PostgreSQL, MySQL, etc.
As a result, learning cardinality models has recently gained a lot of
attention in both academia and industry [7][2][5][4]. Our recent
work, CardLearner [6], exploits patterns in SCOPE workloads to
learn multiple small models that are several orders of magnitude
more accurate at predicting cardinalities. To deploy the above cardi-
nality models to production, we need to test their runtime behavior
in a pre-production environment with constraint on the number of
jobs we can re-run. In this paper, we test our pipeline to select and
rerun a subset of jobs which validate the accuracy of the cardinality
models and safeguard the performance of SCOPE query engine.

2 PROBLEM FORMULATION

Let us consider a set ofmachine learningmodels,M = {m1,m2, ..,mp }

to be deployed on a set of jobs, J = {j1, j2, . . . , jn }. In the process,
we maintain a set of binary variables A = a11,a12, . . . ,aik which
indicate whether ith model is applicable to kth job or not. However,
models learned from previous jobs may lead to performance regres-
sion over future jobs. Therefore, given a budget B for the number of
jobs we can execute in the pre-production setup, we need to select
a set of candidate jobs to run. The goal is to filter out the models
that cause regression and flag the remaining set of modelsM ′ for
production. Figure 1 summarizes this performance safeguarding
problem when deploying learned cardinality models for a query
optimizer. However, note that that the problem is applicable in
general to the wider set of cloud systems that aim to continually
learn from their past workloads.

Conference’17, July 2017, Washington, DC, USA H M Sajjad Hossain, et al.

SCOPE jobs

(queries)

Raw data

(IR & plan)

Select high

impact subset

of jobs from

the workload

Run PlanDiff

model

Run selected

jobs

Using the actual

cost from pre

production

deployment,

retrain PlanDiff

model

CardLearner

models Generate query

plans & meta-

information

Join, featurize,

and format data

Select high

impact subset

of jobs from

the workload

Run selected

jobs

Figure 2: Overall view of PerfGuard pipeline.

3 METHODOLOGY

Database query engines compile user queries into an optimized
physical query plan q that can be represented as a Directed Acyclic
Graph (DAG). We leverage these DAG representations of query
plans to learn and isolate regression causing characteristics as fol-
lows. For a job ji , we generate a default query plan qi . We then
apply a model subsetm ⊂ M to produce a second query plan, q′i . Us-
ing our experimentation pipeline, we attempt to distinguish these
two plans before execution by applying D(qi ,q′i) = θ . D can be any
arbitrary model that consumes q and q′, producing an estimation of
θ (we chose дraph convolution as D for experimentation). Domain
expertise informs the choice of feedback signal θ , which should
reflect an impactful metric in differentiating query plans (for θ , we
chose cost o f execution when experimenting).

Figure 2 illustrates the steps in PerfGuard. Step 1 takes the
CardLearner models and SCOPE jobs and runs a data generation
script to produce the the pre- and post-CardLearner physical plans
along with their corresponding meta-information. We then com-
bine the raw data from the two sources merging the node level
features into an intermediate representation (IR) and keeping the
physical plans as graph structures. Step 2 runs the ingestion and
data validation pipeline to turn the data into the proper featurized
Perfguard model format. Step 3 runs the PlanDiff model. Step 4 is
the job subset selection module to pick a subset of high-impact jobs
from the workload and featurizes the selected job subset meta data.
Step 5 starts pre-production deployment and runs the selected jobs
to obtain run time information. Step 6 is the training pipeline that
re-runs using the actual cost from pre-production deployment in
order to improve accuracy. Step 7 begins the CardLearner selection
for the production environment and provides a list of CardLearner
models that are safe to run for each job. Finally, production deploy-
ment begins in Step 8.

4 EXPERIMENTAL EVALUATION

In order to safeguard the performance of CardLearner models using
our pipeline, we attempt to predict the normalized cost difference
between the original plan generated by the default query engine
and the modified plan using the estimates of CardLearner models.
We compare the performance of our model with baseline regres-
sion models. For these baseline models, we leverage only the IR
statistics of both the query plans. For a job ji , I1i and I2i are the IR
matrices for query plans q1i and q2i . In order to formulate a com-
bined feature representation we multiply both IR matrices and then
extract histogram features with a fixed bin size of 20. As a result
each pair of query plans will be represented as feature according
to, fi =

∑20
j=1 hist(I1

i × I2i). We employed two regression models
based on XgBoost and a two layer feed forward neural network.

PhyOp_Sequence

PhyOp_Write

PhyOp_Range

PhyOp_Exchange

PhyOp_Range

PhyOp_Exchange

PhyOp_Write

PhyOp_Sequence

PhyOp_Write

PhyOp_Range

PhyOp_Exchange

PhyOp_Range

PhyOp_Exchange

PhyOp_Write

(a) Pre CardLearner Plan (b) Post CardLearner Plan

Figure 3: Visualizing importances of physical operators.

We trained both algorithms using 3000 job pairs and tested with
100 job pairs. We demonstrate the performance of our baseline
regression models in Table 1 with different evaluation metrics. We
see that XgBoost outperforms DNN and our DNN is performing
really bad in terms of explaining the variance according to the R2
score. However low R2 does not always indicate that it is a bad
model.

MSE MAE R2
Score

XgBoost 0.09 0.22 0.19
DNN 0.13 0.27 0

PerfGuard 0.10 0.22 0.08
Table 1: Performance of different approaches

In our pipeline, we leverage both query graph structure and IR data and
apply graph convolution network to learn node embeddings and then aggre-
gate the embeddings to formulate graph embeddings for both query graph
structures. We adopt the architecture proposed in SimGNN [1] to calculate
the similarity between the two plans. We utilize attention mechanism to
aggregate the node embeddings, which also provides the importance scores
of the physical operators in the query plans. In Figure 3 we plot the pre
and post CardLearner query plan for a job. According to our algorithm, the
similarity score between these plans is - 0.63702 which means the plans
are almost similar. However if we look at the list of physical operators in
each plans, we notice that there is no change in the plan. We further inves-
tigated individual IRs and validated that the IRs are actually different for
the highlighted nodes which made some differences between the two plans.
We report the accuracy of our algorithm in Table 1. Although our model
performance exhibits similar performance to XgBoost, but our algorithm
provides a method to interpret the difference.

5 CONCLUSION

Safely deploying the newer breed of ML-for-Systems features is a challenge
in cloud systems. In this paper, we presented PerfGuard, a vision for
safeguarding performance regression in production. Initial results with
learned cardinality models demonstrate at least on-par performance with
baseline models. Further investigation of model architecture and larger
datasets should improve performance significantly.

PerfGuard: Deploying ML-for-Systems without Performance Regressions Conference’17, July 2017, Washington, DC, USA

REFERENCES

[1] Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang. 2019.
SimGNN: A Neural Network Approach to Fast Graph Similarity Computation. In
Proceedings of the Twelfth ACM International Conference on Web Search and Data
Mining, WSDM 2019, Melbourne, VIC, Australia, February 11-15, 2019. 384–392.

[2] Rajesh Bordawekar and Oded Shmueli (Eds.). 2019. Proceedings of the Second
International Workshop on Exploiting Artificial Intelligence Techniques for Data
Management, aiDM@SIGMOD 2019, Amsterdam, The Netherlands, July 5, 2019.
ACM. https://doi.org/10.1145/3329859

[3] Ronnie Chaiken, Bob Jenkins, Per-undefinedke Larson, Bill Ramsey, Darren Shakib,
Simon Weaver, and Jingren Zhou. 2008. SCOPE: Easy and Efficient Parallel Pro-
cessing of Massive Data Sets. Proc. VLDB Endow. 1, 2 (Aug. 2008), 1265–1276.

[4] Hazar Harmouch and Felix Naumann. 2017. Cardinality Estimation: An Experi-
mental Survey. PVLDB 11, 4 (2017), 499–512.

[5] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S. Sathiya Keerthi.
2019. An Empirical Analysis of Deep Learning for Cardinality Estimation. CoRR
abs/1905.06425 (2019). arXiv:1905.06425

[6] Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi
Qiao, and Sriram Rao. 2018. Towards a Learning Optimizer for Shared Clouds.
PVLDB 12, 3 (2018), 210–222.

[7] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Peter
Chen, Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, and Ion Stoica.
2019. Deep Unsupervised Cardinality Estimation. PVLDB 13, 3 (2019), 279–292.
https://doi.org/10.14778/3368289.3368294

https://doi.org/10.1145/3329859
http://arxiv.org/abs/1905.06425
https://doi.org/10.14778/3368289.3368294

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Methodology
	4 Experimental Evaluation
	5 conclusion
	References

