
Large Variety  
of Upload Plans

Benefits

2 Easy implementation of any data layout

3 Enable storage heterogeneity

1 Flexible Upload Plan

Allow for new applications4

CARTILAGE: Flexible Hadoop Skeleton 
Alekh Jindal
CSAIL, MIT

Jorge Quiané
Data Analytics Group, QCRI

Samuel Madden
CSAIL, MIT

R
ig

id
 s

ke
le

to
n!

Current Practice: modify the Hadoop code Issues

Research Challenges

1 Improved performance only for specific workloads
2 Still a hard-coded upload plan
3 Deep changes to Hadoop
4 Hard to use

1 How to adapt storage to a large variety of workloads?
2 How to provide flexibility without code changes?
3 Flexibility vs Ease-of-Use vs Efficiency
4 How to preserve fault-tolerance?

CARTILAGE

Poor PerformanceDefault HDFS

Input Dataset

Hard-coded Upload Pipeline

Replicator

Physical Partitioner

Parser

Store

HDFS

Block Replica Placement

bringing us to...

1 Inflexible Upload Plan

Idea

2

Introduce a declarative upload plan

3

Decouple users datasets from
physical files

1
results in

Parser

Replicato

Input Dataset

Locator

Physical Partitioner

Uploader

HDFS

C
A

R
TI

LA
G

E

C
A

R
TI

LA
G

E

Parser

Replicator 1

Input Dataset

Locator 2

Physical
Partitioner 2

Logical Partitioner

Serializer 3

Locator 1

HDFSUploader

Physical
Partitioner 1

Serializer 2Serializer 1

Replicator 2

replica 1 replica 2

replica 1a replica 1b

HDFS
(a) Emulating HDFS

(c) Heterogenous storage

CSV Parser

Input Dataset

RangeCo-Locator

IntRange Partitioner

HDFSUploader

PhysicalPartitione

range: [200, 300] range: ~[200, 300]

5x Replicator 2x Replicator

C
A

R
TI

LA
G

E

HDFS

(b) Flexible data replication

Allow for flexible query processing

Flexible skeleton!

Input Dataset

New

Replica 1

Hard-coded Upload Pipeline

Replicator

Physical Partitioner

Parser

New New

Replica 2 Replica 3

HDFS

Block Replica Placement

Some existing proposals:
• RCFile (ICDE’11)
• CIF (VLDB’11)
• TrojanLayouts (SOCC’11)
• HAIL (VLBD’12)

C
A

R
TI

LA
G

E

CSV Parser

3x Replicator

Input Dataset

RandomLocator

HDFSUploader

RangePartitioner 1

PhysicalPartitioner 1 PhysicalPartitioner 2

RangePartitioner 2

HDFS

(d) Heterogenous partitioning

Improved Performance

Ti
m

e
(s

ec
)

0

100

200

300

400

Number of Projected Attributes
1 8 15

HDFS String Binary PAX RCFile
CompPAX ColGroup

Ti
m

e
(s

ec
)

0

100

200

300

400

HDFS
Post Filter

Late Materialization
Index Access

Path Filter
Global Sort

1 0.9 0.8 0.7 0.6 0.5 0.4
0.3 0.2 0.1

Ti
m

e
(s

ec
)

0

200

400

600

800

Aggregation Key Cardinality
150M 1M

HDFS
Hash Groupby
Sort Groupby

Ti
m

e
(s

ec
)

0

2000

4000

6000

8000

Join Key
Order_id Customer_id

HDFS Hash Join

(a) Projection (b) Selection (c) Aggregation (d) Join

results in

1 Nodes 10 Nodes 25 Nodes 50 Nodes 100 Nodes
0

20

40

60

80

100

120

140

160

se
co

nd
s

←
 0

.3

←
 0

.8

←
 1

.8

←
 4

.7

←
 1

2.
4

Vertica Hadoop

Figure 6: Selection Task Results

tom input handlers in Hadoop; the MR programs are able to use
Hadoop’s KeyValueTextInputFormat interface on the data
files to automatically split lines of text files into key/values pairs by
the tab delimiter. Again, we found that other data format options,
such as SequenceFileInputFormat or custom Writable
tuples, resulted in both slower load and execution times.

DBMS-X: We used the same loading procedures for DBMS-X as
discussed in Section 4.2. The Rankings table was hash partitioned
across the cluster on pageURL and the data on each node was sorted
by pageRank. Likewise, the UserVisits table was hash partitioned
on destinationURL and sorted by visitDate on each node.

Vertica: Similar to DBMS-X, Vertica used the same bulk load com-
mands discussed in Section 4.2 and sorted the UserVisits and Rank-
ings tables by the visitDate and pageRank columns, respectively.

Results & Discussion: Since the results of loading the UserVisits
and Ranking data sets are similar, we only provide the results for
loading the larger UserVisits data in Figure 3. Just as with loading
the Grep 535MB/node data set (Figure 1), the loading times for
each system increases in proportion to the number of nodes used.

4.3.2 Selection Task
The Selection task is a lightweight filter to find the pageURLs

in the Rankings table (1GB/node) with a pageRank above a user-
defined threshold. For our experiments, we set this threshold pa-
rameter to 10, which yields approximately 36,000 records per data
file on each node.

SQL Commands: The DBMSs execute the selection task using the
following simple SQL statement:

SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

MapReduce Program: The MR program uses only a single Map
function that splits the input value based on the field delimiter and
outputs the record’s pageURL and pageRank as a new key/value
pair if its pageRank is above the threshold. This task does not re-
quire a Reduce function, since each pageURL in the Rankings data
set is unique across all nodes.

Results & Discussion: As was discussed in the Grep task, the re-
sults from this experiment, shown in Figure 6, demonstrate again
that the parallel DBMSs outperform Hadoop by a rather significant

factor across all cluster scaling levels. Although the relative per-
formance of all systems degrade as both the number of nodes and
the total amount of data increase, Hadoop is most affected. For
example, there is almost a 50% difference in the execution time
between the 1 node and 10 node experiments. This is again due
to Hadoop’s increased start-up costs as more nodes are added to
the cluster, which takes up a proportionately larger fraction of total
query time for short-running queries.
Another important reason for why the parallel DBMSs are able

to outperform Hadoop is that both Vertica and DBMS-X use an in-
dex on the pageRank column and store the Rankings table already
sorted by pageRank. Thus, executing this query is trivial. It should
also be noted that although Vertica’s absolute times remain low, its
relative performance degrades as the number of nodes increases.
This is in spite of the fact that each node still executes the query in
the same amount of time (about 170ms). But because the nodes fin-
ish executing the query so quickly, the system becomes flooded with
control messages from too many nodes, which then takes a longer
time for the system to process. Vertica uses a reliable message layer
for query dissemination and commit protocol processing [4], which
we believe has considerable overhead when more than a few dozen
nodes are involved in the query.

4.3.3 Aggregation Task
Our next task requires each system to calculate the total adRev-

enue generated for each sourceIP in the UserVisits table (20GB/node),
grouped by the sourceIP column. We also ran a variant of this query
where we grouped by the seven-character prefix of the sourceIP col-
umn to measure the effect of reducing the total number of groups
on query performance. We designed this task to measure the per-
formance of parallel analytics on a single read-only table, where
nodes need to exchange intermediate data with one another in order
compute the final value. Regardless of the number of nodes in the
cluster, this tasks always produces 2.5 million records (53 MB); the
variant query produces 2,000 records (24KB).

SQLCommands: The SQL commands to calculate the total adRev-
enue is straightforward:

SELECT sourceIP, SUM(adRevenue)
FROM UserVisits GROUP BY sourceIP;

The variant query is:

SELECT SUBSTR(sourceIP, 1, 7), SUM(adRevenue)
FROM UserVisits GROUP BY SUBSTR(sourceIP, 1, 7);

MapReduce Program: Unlike the previous tasks, the MR program
for this task consists of both a Map and Reduce function. The Map
function first splits the input value by the field delimiter, and then
outputs the sourceIP field (given as the input key) and the adRev-
enue field as a new key/value pair. For the variant query, only the
first seven characters (representing the first two octets, each stored
as three digits) of the sourceIP are used. These two Map functions
share the same Reduce function that simply adds together all of the
adRevenue values for each sourceIP and then outputs the prefix and
revenue total. We also used MR’s Combine feature to perform the
pre-aggregate before data is transmitted to the Reduce instances,
improving the first query’s execution time by a factor of two [8].

Results & Discussion: The results of the aggregation task experi-
ment in Figures 7 and 8 show once again that the two DBMSs out-
perform Hadoop. The DBMSs execute these queries by having each
node scan its local table, extract the sourceIP and adRevenue fields,
and perform a local group by. These local groups are then merged at

2 Not suitable for many applicationsresults in

1 Nodes 10 Nodes 25 Nodes 50 Nodes 100 Nodes
0

200

400

600

800

1000

1200

1400

1600

1800

se
co

nd
s

←
 21

.5

←
 28

.2

←
 31

.3

←
 36

.1

←
 85

.0

←
 15

.7

←
 28

.0

←
 29

.2

←
 29

.4

←
 31

.9

Vertica DBMS−X Hadoop

Figure 9: Join Task Results

1 Nodes 10 Nodes 25 Nodes 50 Nodes 100 Nodes
0

1000

2000

3000

4000

5000

6000

7000

8000

se
co

nd
s

Vertica Hadoop

Figure 10: UDF Aggregation Task Results

records for a particular sourceIP on a single node. We use the iden-
tity Map function in the Hadoop API to supply records directly to
the split process [1, 8].
Reduce Function: For each sourceIP, the function adds up the

adRevenue and computes the average pageRank, retaining the one
with the maximum total ad revenue. Each Reduce instance outputs
a single record with sourceIP as the key and the value as a tuple of
the form (avgPageRank, totalRevenue).

Phase 3 – In the final phase, we again only need to define a sin-
gle Reduce function that uses the output from the previous phase to
produce the record with the largest total adRevenue. We only exe-
cute one instance of the Reduce function on a single node to scan
all the records from Phase 2 and find the target record.
Reduce Function: The function processes each key/value pair

and keeps track of the record with the largest totalRevenue field.
Because the Hadoop API does not easily expose the total number
records that a Reduce instance will process, there is no way for
the Reduce function to know that it is processing the last record.
Therefore, we override the closing callback method in our Reduce
implementation so that the MR program outputs the largest record
right before it exits.

Results & Discussion: The performance results for this task is dis-
played in Figure 9. We had to slightly change the SQL used in 100
node experiments for Vertica due to an optimizer bug in the system,
which is why there is an increase in the execution time for Vertica
going from 50 to 100 nodes. But even with this increase, it is clear
that this task results in the biggest performance difference between
Hadoop and the parallel database systems. The reason for this dis-
parity is two-fold.
First, despite the increased complexity of the query, the perfor-

mance of Hadoop is yet again limited by the speed with which the
large UserVisits table (20GB/node) can be read off disk. The MR
program has to perform a complete table scan, while the parallel
database systems were able to take advantage of clustered indexes
on UserVisits.visitDate to significantly reduce the amount of data
that needed to be read. When breaking down the costs of the dif-
ferent parts of the Hadoop query, we found that regardless of the
number of nodes in the cluster, phase 2 and phase 3 took on aver-
age 24.3 seconds and 12.7 seconds, respectively. In contrast, phase
1, which contains the Map task that reads in the UserVisits and
Rankings tables, takes an average of 1434.7 seconds to complete.
Interestingly, it takes approximately 600 seconds of raw I/O to read
the UserVisits and Rankings tables off of disk and then another 300

seconds to split, parse, and deserialize the various attributes. Thus,
the CPU overhead needed to parse these tables on the fly is the lim-
iting factor for Hadoop.
Second, the parallel DBMSs are able to take advantage of the fact

that both the UserVisits and the Rankings tables are partitioned by
the join key. This means that both systems are able to do the join
locally on each node, without any network overhead of repartition-
ing before the join. Thus, they simply have to do a local hash join
between the Rankings table and a selective part of the UserVisits
table on each node, with a trivial ORDER BY clause across nodes.

4.3.5 UDF Aggregation Task
The final task is to compute the inlink count for each document

in the dataset, a task that is often used as a component of PageR-
ank calculations. Specifically, for this task, the systems must read
each document file and search for all the URLs that appear in the
contents. The systems must then, for each unique URL, count the
number of unique pages that reference that particular URL across
the entire set of files. It is this type of task that the MR is believed
to be commonly used for.
We make two adjustments for this task in order to make pro-

cessing easier in Hadoop. First, we allow the aggregate to include
self-references, as it is non-trivial for a Map function to discover
the name of the input file it is processing. Second, on each node
we concatenate the HTML documents into larger files when storing
them in HDFS. We found this improved Hadoop’s performance by
a factor of two and helped avoid memory issues with the central
HDFS master when a large number of files are stored in the system.

SQL Commands: To perform this task in a parallel DBMS re-
quires a user-defined function F that parses the contents of each
record in the Documents table and emits URLs into the database.
This function can be written in a general-purpose language and is
effectively identical to the Map program discussed below. With this
function F, we populate a temporary table with a list of URLs and
then can execute a simple query to calculate the inlink count:

SELECT INTO Temp F(contents) FROM Documents;
SELECT url, SUM(value) FROM Temp GROUP BY url;

Despite the simplicity of this proposed UDF, we found that in
practice it was difficult to implement in the DBMSs.
For DBMS-X, we translated the MR program used in Hadoop

into an equivalent C program that uses the POSIX regular expres-
sion library to search for links in the document. For each URL
found in the document contents, the UDF returns a new tuple (URL,

(b) Join(a) Selection

