

Graphs On Databases

Alekh Jindal

Sam Madden Mike Stonebraker

CSAIL, MIT

Jena FlockDB AllegeroGraph TAO Pegasus Neo4i DEX HypergraphDB Pregel Titan GraphBase Twister Giraph Trinity HaLoop GraphLab Prltr

Can we have efficient graph analytics within a SQL Database?

Graph Analytics on SQL Databases

- Graph: set of nodes, set of edges
- Node table: nodeld and associated metadata
- Edge table: (from,to) nodelds and associated metadata
- Undirected graph: two tuples per edge
- Node/Edge access: selection, projection on node and edge tables
- Graph traversal: successive joins between node and edge tables

Optimizations

- Number of Joins
 Parallel graph exploration
- Number of queries; round trips
 Nested queries; database handles the optimizations
- Data movement between server and client UDFs, Stored Procedures
- Database connections
 Keep connections alive between iterations
- SQL query performance Sort orders, indexes

How does the performance look like?

PageRank

Nodes

Edges

Shortest Paths

What about the query interface? Is SQL the right choice for graph queries?

Shortest Path in SQL

```
UPDATE NNodes AS nnode
 SET Estimate = new_nnode.Estimate, Predecessor = new_nnode.Predecessor
 FROM
  (SELECT temp.Id, temp.Estimate, edge.from_node AS Predecessor
   FROM NNodes AS nn, edge,
     (SELECT e.to_node AS Id, min(n1.Estimate+1) AS Estimate
      FROM NNodes AS n1, edge AS e, NNodes AS n2
      WHERE n1.ld=e.from_node AND n2.ld=e.to_node
      GROUP BY e.to_node, n2.Estimate
                                                          Tables !!!
      HAVING min(n1.Estimate+1) < n2.Estimate
     ) AS temp
   WHERE nn.ld=edge.from_node
    AND edge.to_node=temp.ld
    AND nn.estimate=temp.estimate-1
  ) AS new_nnode
```

WHERE nnode.ld = new_nnode.ld;

Shortest Path in Pregel

```
void compute(vector<vfloat> messages){
 // get the minimum distance
 vfloat mindist = id==START_NODE ? 0 : DBL_MAX;
 for(vector<vfloat>::iterator it = messages.begin(); it != messages.end(); ++it)
  mindist = min(mindist,*it);
 // send messages to all edges if new minimum is found
 vfloat vvalue = getVertexValue();
                                                                  Graph!!!
 if(mindist < vvalue){</pre>
  modifyVertexValue(mindist);
  vector<vint> edges = getOutEdges();
  for(vector<vint>::iterator it = edges.begin(); it != edges.end()
   sendMessage(*it, mindist+1);
// halt
 voteToHalt();
```

What about having a vertex-centric interface in a SQL Database?

Vertex-centric Interface in SQL Databases

- Idea: Map vertex-centric program execution to SQL queries in a SQL database
- The programmer specifies what happens on each vertex in the graph
- Vertices are executed as long as they are in active state or if they have an incoming message
- Exact same API as in Pregel, e.g. getting incoming messages, vertex value, vertex edges, etc.

Implementation Details

- Vertex (V), Edge (E), Message (M)
- The vertex programs are executed in parallel (super step) as UDFs in the SQL database
- Vertex Input: (V,E,M) for the vertex
- Vertex Output: outgoing M from the vertex
- A coordinator synchronizes between super steps, i.e.
 redistributes the messages from one super step to the next
- The coordinator stops when there are no more messages

Optimizations

- 3-way join, instead of 2-way
 Table unions in place of joins
- UDF call overheads
 Batching several vertices in each UDF call
- Too many new messages in each super step Replace messages table, no in-place updates
- SQL query performance Sort orders, indexes

How does the performance look like?

Shortest Paths

Vertex-centric interface allows...

- Connected Components
- Random Walks with Restart
- Stochastic Gradient Descent
- Message Passing Algorithms
- Or, any other vertex-centric algorithm

.... right within the SQL database system!

Summary

- Graph analytics can be mapped to relational queries (plus UDFs)
- SQL systems can offer very good performance over relational queries
- We can extend SQL systems to provide more graph-natural query interfaces

Team Members

Non-faculty Members

Non-faculty, non-postdoc ...

Graphs On Databases

Alekh Jindal

Sam Madden Mike Stonebraker

CSAIL, MIT

