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Rise of Big Data Systems
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Declarative query interface
Cost-based query optimizer (CBO)

SELECT Customer.cname, Item.iname
FROM Customer
INNER JOIN Order
ON Customer.cid == Order.cid
INNER JOIN Item
ON Item.iid == Order.iid
WHERE Item.iprice > 100
AND Customer.cage < 18;
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Rise of Big Data Systems
The root of all evil, the Achilles Heel of query optimization, 
is the estimation of the size of intermediate results, known 
as cardinalities. – [Guy Lohman, SIGMOD Blog 2014]
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Rise of Big Data Systems
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Rise of the Clouds
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Hope: Shared Cloud Infrastructures
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Massive volumes of query logs

Shared data processing

Centrally visible query workload



Cosmos: shared cloud infra at Microsoft

• SCOPE Workloads: 
• Batch processing in a job service
• 100Ks jobs; 1000s users; EBs data; 100Ks nodes

• Cardinality estimation in SCOPE:
• 1 day’s log from Asimov
• Lots of constants for best effort estimation
• Big data, unstructured Data, custom code

• Workload patterns
• Recurring jobs 
• Shared query subgraphs

• Can we learn cardinality models?
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Learning Cardinality Model

• Strict: cache previously seen values
• Low coverage
• Online feedback

• General: learning a single model
• Hard to featurize
• Hard to train
• Prediction latency
• Low accuracy

• Template: learning a model per subgraph template
=> No one-size-fits-all

Subgraph 
Type

Logical 
Expression

Parameter 
Values

Data 
Inputs

Strict Fixed Fixed Fixed

General Variable Variable Variable

Template Fixed Variable Variable



Learned Cardinality Models

• Subgraph Template:
• Same logical subexpression
• Different physical implementation
• Different parameters and inputs

• Feature Selection
• Model Selection
• Generalized liner models due to their 

interpretability
• More complex models, such as multi-

layer perceptron harder to train

fraction of the total subgraphs in the workload (e.g., less than 10%
on our production workloads). Hence, low applicability is the main
challenge with the most strict subgraph matches.

The bottom row in Table 2 shows the other extreme, where none
of the logical expressions, parameter values, and data inputs are
fixed. In this case, we essentially learn a single global model that
can predict cardinalities for all possible subgraphs, i.e., having full
applicability. However, it turns out that building a single global
model is impractical for a number of reasons: (i) feature engineer-
ing: featurizing the logical expression of the subgraph is challeng-
ing since it is difficult to express a variable-size subgraph as a fixed-
size feature vector without losing the structure of the graph, which
we assume have strong predictive signal. (ii) large-scale training: a
very large set of training data is required to train one single model,
which in turn needs powerful scale-out machine learning tools to
be developed. (iii) prediction latency: the single model approach
requires a large number of features, and extracting all features dur-
ing the query compilation phase is at odds with the pressing needs
of low compile time; in particular, getting features that relate to in-
put data distribution (such as max, min, number of distinct values)
could require preprocessing that is simply not possible for ad-hoc
queries.

We take a middle ground. Our approach is to learn cardinalities
for each template subgraph (Table 2), with varying parameters and
inputs. This has a number of advantages:
(1) Easier to featurize: We no longer need to featurize the logical
expression. Furthermore, since subgraphs with the same logical
expression have the same input data schema, the data distributions
remain roughly the same and the only data feature that typically
matters is the input size, which could be easily retrieved from the
database catalog. Furthermore, the parameter values provided to
the logical expression could be readily used as features. Therefore,
learning at this granularity makes featurization much simpler.
(2) Higher applicability: Compared to the most strict subgraphs,
learning cardinalities for templates gives higher applicability as it
allows both parameters and data inputs to vary (Table 2).
(3) Higher accuracy: It is challenging to have high accuracy in a
single model, due to the non-linear nature of the target cardinality
function. Instead, a large number of smaller models allows us to
capture the non-linearity of each subgraph more accurately.
(4) Offline feedback loop: Since subgraph templates allow for in-
puts and parameters to vary, we could periodically train the model
and use it to predict future subgraphs that have matching logical
expressions. Moreover, since training happens offline, its overhead
does not lie on the critical path of query processing. We discuss in
Section 6 how to detect when the models become fairly inaccurate
and retrain them.

3.3 Feature Engineering
Below we discuss the features we use to train our models and

analyze the impact of each feature on different subgraph models.

3.3.1 Feature Selection
There are three types of features that we consider, listed together

in Table 3. First, we extract metadata such as the name of the job
the subgraph belongs to and the name of the input datasets. These
metadata attributes are important as they could be used as inputs to
user defined operators. In fact, the reason that leads to the orders-
of-magnitude difference in the output cardinality between the first
and the second row in Table 1 is due to the difference in the name
of the job (everything else is the same for these two observations).

Second, we extract the input cardinalities of all input datasets.
Intuitively, the input cardinality plays a central role in predicting

Table 3: The features used for learning cardinality.
Name Description
JobName Name of the job containing the subgraph
NormJobName Normalize job name
InputCardinality Total cardinality of all inputs to the subgraph
Pow(InputCardinality, 2) Square of InputCardinality
Sqrt(InputCardinality) Square root of InputCardinality
Log(InputCardinality) Log of InputCardinality
AvgRowLength Average output row length
InputDataset Name of all input datasets to the subgraph
Parameters One or more parameters in the subgraph

the output cardinality (similar to LEO’s assumption [39]). In or-
der to account for operators (joins, aggregations, and UDO) that
can lead to a non-linear relationship between the input and output
cardinality, we also compute the squared, squared root, and the log-
arithm of the input cardinality as features.

Finally, since the parameters associated with operators, such as
filters and UDOs, can have a big impact in the output cardinality,
we also extract these parameters as features.

3.3.2 Feature Analysis
We now analyze the features that contribute to our model’s pre-

diction. We analyze the Poission regression models under the pro-
duction training data from one of the largest customers in SCOPE
(described earlier in Section 2). We consider Poisson regression
since it offers the best performance, as shown later in Section 6.
For each model, the features that do not contribute to the prediction
are given zero weights. Hence, inspecting the features with non-
zero weights gives us insight about what features contribute more
to the prediction (important for R4 from Section 2). In Figure 2(a),
for each feature (x-axis), we compute the fraction of the models
where the feature has non-zero weights (y-axis). Since each model
can have different number of parameters as features, we group these
parameters into one feature category named ‘Parameters’ for ease
of presentation. Across all the models that we trained, we notice
that InputCardinality plays a central role in model prediction as it
has non-zero weights in near 50% of the models. It is worth noting
that the squared, squared root, and logarithm of the input cardinal-
ity also have big impact on the prediction. In fact, the fractions are
a bit higher than InputCardinality. Interestingly, all other features
also have noticeable contribution. Even the least significant fea-
ture, AvgRowLength, has non-zero weights in more than 10% of
the models.

We further group the models based on the root operator of the
subgraph template, and analyze models whose root operators are
Filter, UDO, Join, and Aggregation. For Join and UDO, we notice
that the importance of cardinality and input dataset features go up
significantly, possibly due to complex interaction between different
datasets for Joins and ad-hoc user-defined data transformations for
UDOs. For Filter, it is not surprising to see that Parameters con-
tribute a lot more, e.g., the parameter values to the filter operator
can have big impact on the output cardinality. For Aggregation, we
see the AvgRowLength matters a lot less because a large fraction of
the aggregation queries produce a single number as output, which
has the same row length. To summarize, Figure 2(a) shows that a
lot of features other than InputCardinality contribute to cardinality
prediction, and models with different operators have different set
of important features.

Figure 2(b) shows the cumulative distribution of the number of
non-zero weight features our models contain. Overall, we see that
more than 55% of the models have at least 3 features that contribute
to the prediction, and 20% of the models have at least 6 features.
It is worth noting that for models whose root operators are UDOs,
more than 80% of the models have at least 5 contributing features.
This confirms that subgraphs with complex operators need a num-
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Accuracy: 10-fold cross validation
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End-to-end Feedback Loop

Model Lookup & Prediction

Compiler Optimizer Scheduler Runtime
Query

Result

Actual runtime 
statistics

Optimized plans & 
estimated statistics

Execution graphs 
& resources

Compiled 
query DAGs

Workload 
Analyzer

Parallel 
Trainer

Cardinality 
Models

Model 
Server

Figure 5: The feedback loop architecture.

5.3 Model Server
The model server is responsible for storing all the models trained

by the parallel trainer. For each subgraph template hash, the server
keeps track of the model along with its accuracy improvement
(measured in the ten-fold cross validation) over the optimizer’s
default estimation. Models with high accuracy improvement are
cached into the database to improve the efficiency of model lookup.
Note that caching all models into the database is impractical due
to limited storage resources. Since SCOPE job graphs can have
hundreds of nodes and hence cardinality models, the model server
builds an inverted index on the job metadata (which often remains
the same across multiple instances of a recurring job) to return all
relevant cardinality models for a given job in a single call.

5.4 Model Lookup & Prediction
The compiler and optimizer are responsible for model lookup

and prediction, as shown in Figure 5. First, the compiler fetches
all relevant cardinality models for the current job and passes them
as annotations to the optimizer. Each annotation contains the sub-
graph template hash, the model, and the accuracy improvement.
Thereafter, the optimizer prunes out the false positives by match-
ing the subgraph template hash of the model with the hashes of
each subgraph in the job graph. For matching subgraphs, the opti-
mizer generates the features and applies them to the corresponding
model to get the predicted cardinality. Either of the compiler or
the optimizer could prune models with sufficiently low accuracy
improvement. In addition, any row count hints from the user (in
their job scripts) still supersede the predicted cardinality values, in
accordance to requirement R1 from Section 2.

5.5 Retraining
We need to retrain the cardinality models for two reasons: (i) ap-

plying cardinality predictions would result in new query plans and
new subgraph templates, and hence we need to retrain until the
plans stabilize, and (ii) the workloads change over time and hence
many of the models are no longer applicable. Therefore, we need
to perform periodic retraining of the cardinality models to update
existing models as well as adding new ones. We do this by keep-
ing track of the cardinality models’ applicability, i.e., the fraction
of the subgraphs and jobs for which the models are available, and
retrain when those fractions fall below a threshold. We show in our
experiments (Section 6.1.3) that one month is a reasonable time to
retrain our models.

5.6 Exploration
Exploratory join ordering executes alternate subgraphs that could

be potentially expensive. Due to the SLA sensitivity of our pro-
duction workloads, we need to involve humans (users, admins) in
the loop in order to manage the expectations properly. Therefore,
our current implementation runs the exploratory join ordering algo-
rithm separately to produce the next join order given the subgraphs
seen so far. Users can then enforce the suggested join order using
the FORCE ORDER hint in their job scripts, which is later enforced
by the SCOPE engine during optimization. Users can apply these

hints to their recurring/overlapping jobs, static tuning jobs, or pi-
lot runs over sample data. Note that involving human-in-the-loop
is not fundamental to our approach and we only do that for explo-
ration to manage user expectations. Alternatively, we could run
the exploration phase on a sample dataset or over a static offline
workload, as discussed in Section 4.2.

6. EXPERIMENTS
We now present an experimental evaluation of CARDLEARNER

over the same dataset as discussed in Section 2, i.e., one days
worth of jobs consisting of tens of thousands of jobs from one
of the largest customers on SCOPE, the Asimov system [4]. The
goals of our evaluation are four-fold: (i) to evaluate the quality of
the learned cardinality models, (ii) to evaluate the impact of feed-
back loop on the query plans, (iii) to evaluate the improvements in
performance, and (iv) to evaluate the effectiveness of exploratory
query planning. We discuss each of these below.

6.1 Model Evaluation

6.1.1 Training
Let us look at the training error of different learning models. Fig-

ure 6(a) shows the results over tens of thousands of subgraph tem-
plates. We also included the prediction error from the optimizer’s
default estimation as a baseline comparison. We notice that for
90% of the subgraph templates, the training error of all three mod-
els (neural network, linear regression, and Poisson regression) is
less than 10%. For the baseline, however, only 15% of the sub-
graph templates achieve the same level of performance. Therefore,
our learning models significantly outperform the baseline.

Figure 6(b) shows the effect of using the enhanced cardinality
features on the prediction accuracy. The enhanced features include
the square, square root, and log of input cardinality, as discussed in
Section 3.3.1, to account for operators that can lead to a non-linear
relationship between the input and output cardinality. We observe
that adding these features does lead to an improvement in terms of
the training accuracy. As we will see in Section 6.2, the enhanced
features lead to more (better) query plan changes.

Figure 6(c) shows the Pearson correlation between the predicted
cardinality and the actual cardinality for different models. We see
that both linear and Poisson regression achieve higher correlation
than the baseline. Surprisingly, although neural network attains
very low training error, the correlation is lower than the baseline.

In order to study the impact of the root operator on the quality
of cardinality estimation, we group the subgraph templates by the
type of their root operator. Figure 7(a)– 7(c) shows the training
error of our models and the baseline on subgraph templates whose
root operators are scan, filter, and join. While for the scan opera-
tor, the accuracy of the optimizer’s estimates are comparable to our
models’, our models perform significantly better than the baseline
for the other two operators. This gives us insight that some models
are more important than others, and therefore help us decide which
model to cache when we have limited storage budget.

For GLM models (Poisson regression), which turn out to be the
best, we only need to store the feature name and weight pairs and
this results in an average model size of 174 bytes (75th percentile
119 bytes, 90th percentile 418 bytes). We built a total of 34,065
models in this experiment, resulting in a total size of 5.7MB, which
is easily manageable. To fit larger number of models within a stor-
age budget, we first filter models to have accuracy improvement
(over the optimizer’s default estimation) above a minimum thresh-
old and then maximize coverage (number of applicable jobs) while

Large number of smaller, highly accurate models
Trained offline over new batches of data

Easy to featurize with low overhead

Annotation hints 
to the query 
optimizer

Accurate and easy to understand



Performance

• Subset of hourly jobs from Asimov
• These queries process unstructured data, use SPJA operators, and a UDO
• Re-ran the queries over same production data, but with redirected output
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Avoiding Learning Bias

• Learning only what is seen
• Exploratory join ordering
• Actively try different join orders
• Pruning: discard plans with subexpressions that are more expensive than at 

least one other plan
• Maximize new observations when comparing plans

• Execution strategies
• Static workload tuning
• Using sample data
• Leveraging recurring/overlapping jobs
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Z
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Actual:100

(a) Plan 1

X Z

Y
Estimated:75 

Actual:75

Actual:100

(b) Plan 2

Y Z

X
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Actual:50

Actual:100

(c) Plan 3

Figure 3: Candidate exploration plans with estimated and ac-
tual cardinalities for X 1 Y 1 Z.

Algorithm 1: EarlyPruning
Input : Relation r, Plan p, Query q, RuntimeCosts c, CardModels m
Output: Return null if pruning is possible; otherwise the input plan with updated

cardinality, if possible.

1 if m.Contains(r) then
2 p.UpdateCard(m.Predict(r))

3 if c.Contains(p) && c.GetBestCost(q)< c.GetCost(p) then
// prune as outer is more expensive than an

overall query plan

4 return null

5 return p

optimizer will pick plan 2. However, even though Y 1 Z is the
cheapest option, it is never explored since the estimated cardinality
of Y 1 Z is higher than any of the actual cardinalities observed so
far. Thus, we need a mechanism to explore alternate join orders and
learn cardinality models of those alternate subgraphs, which might
have higher estimated costs but turn out to be cheaper.

4.1 Exploratory Join Ordering
We now present an exploratory join ordering technique to con-

sider alternate join orders, based on prior observations, and ulti-
mately discover the best one. The core idea is to leverage existing
cardinality models and actual runtime costs of all previously ex-
ecuted subgraphs to: (i) quickly explore alternate join orders and
build cardinality models over the corresponding new subgraphs,
and (ii) prune expensive join paths early so as to reduce the search
space. Having cardinality models over all possible alternate sub-
graphs naturally leads to finding the best join order. We present our
key components below.
Early pruning. The number of join orders are typically exponen-
tial and executing all of them one by one is simply not possible,
even for a small set of relations. Therefore, we need to quickly
prune the search space to only execute the interesting join orders.
Our intuition is that whenever a subgraph plan turns out to be more
expensive than a full query plan, we could stop exploring join or-
ders which involve that subgraph plan. For instance, if A 1 C is
more expensive than ((A 1 B) 1 C) 1 D, then we can prune
join orders ((A 1 C) 1 B) 1 D and ((A 1 C) 1 D) 1 B, i.e.,
all combinations involving A 1 C are discarded as the total cost is
going to be even higher anyways.

Algorithm 1 shows the pseudocode for early pruning described
above. The input relations correspond to the subgraph to be evalu-
ated for pruning. The algorithm first updates the cardinality of the
subgraph using the predicted value if a model is available (line 1-
2). It then checks the RuntimeCosts cache to see whether the cost
of the candidate plan is more expensive than the cost of the best
query plan2. If so, the plan is pruned; otherwise it is kept.
Exploration comparator. The goal of exploratory join ordering is
to learn cardinality models for alternate subgraph templates. Thus,

2It could be the observed cost from the exact same subgraph/query
or the predicted cost computed using a learned cardinality model
from the recurring subgraph/query.

Algorithm 2: ExplorationComparator
Input : Plan p1, Plan p2, Ranking ranking, RuntimeCosts c
Output: Return true if p1 is better than p2; false otherwise.

1 h1 = NewObservations(c, p1)
2 h2 = NewObservations(c, p2)
3 begin
4 switch ranking do
5 case OPT COST
6 return (p1.cost < p2.cost)

7 case OPT OBSERVATIONS
8 return (h1 > h2) || (h1==h2 && p1.cost < p2.cost)

9 case OPT OVERHEAD
10 return (p1.cost << p2.cost) || (p1.cost ⇡ p2.cost & h1 > h2)

Algorithm 3: ExploratoryPlanner
Input : Query q, Ranking ranking, RuntimeCosts c, CardModels m
Output: Left-deep plan for the query q.

1 Relation [] rels = LeafRels(q) // relations to join

2 Map <Relation,Plan > optPlans = {}
3 foreach r 2 rels do
4 optPlans[r] = ScanPlan(r) // generate scan plans

// perform left-deep bottom-up enumeration

5 foreach d 2 [1, |R| � 1] do
6 foreach outer : outer ⇢ R, |outer| = d do
7 foreach inner : inner 2 (R � outer) do
8 Plan pOuter = optPlans[outer]
9 Plan pInner = optPlans[inner]

10 pOuter = EarlyPruning(outer, pOuter, q, c, m)
11 pInner = EarlyPruning(inner, pInner, q, c, m)
12 if pOuter==null || pInner==null then
13 Continue
14 Plan p = OptJoin(pOuter, pInner) // join algo

15 Plan pOpt = optPlans[p.rel]
16 if (pOpt==null) || ExplorationComparator(p, pOpt,

ranking, c) then
17 optPlans[p.rel] = p // add plan

18 return optPlans[q];

for two equivalent plans, we want to pick the one which maximizes
the number of new subgraph templates observed. This is in contrast
to the typical approach of picking the cheapest plan amongst equiv-
alent query plans. Figure 4 illustrates the idea, where the planner
first executes the plan shown in Figure 4(a) and then considers next
plan choices 1 and 2 for other runs of this recurring query, shown in
Figure 4(b) and 4(c). The planner makes only one new observation
with plan 1, namely A 1 B 1 D, as A 1 B and A 1 B 1 D 1 C

(which is equivalent to A 1 B 1 C 1 D) have already been ob-
served. However, with plan 2, the planner makes two new obser-
vations, namely C 1 D and C 1 D 1 A. Thus, plan 2 is better
in terms of the number of new observations. Alternatively, in case
C 1 D had appeared in some other queries, plans 1 and 2 would
have had the same number of observations.

Algorithm 2 shows the exploration plan comparator. In addition
to the standard comparison to minimize cost (Lines 5–6), we pro-
vide a mode to maximize the number of new observations (Line
7). In case of a tie, we pick the plan with the lower cost in order
to keep the execution costs low (Line 8). To reduce the overhead
even further, we could pick the plan with higher number of new
observations only if both plans have similar cost (Lines 9–10). The
exploration comparator provides knobs to the planner to explore
alternate join orders over recurring queries.
Exploratory planner. We now describe how the early pruning
strategy and the exploration plan comparator can be integrated into
a query planner for exploratory join ordering. Algorithm 3 shows
the exploratory version of System R style bottom-up query planner,



Takeaways

• Big data systems increasingly use cost-based optimization
• Users cannot tune these systems in managed/serverless services
• Hard to achieve a one-size-fits-all query optimizer
• Instance optimized systems are more feasible
• Very promising results from SCOPE workloads:
• Could achieve very high accuracy
• Reasonably large applicability, could further apply exploration
• Performance gains, most significant being less resource consumption

• Learned cardinality models a step towards self-learning optimizers


