
Peregrine: workload optimization
for cloud query engines

Alekh Jindal, Hiren Patel, Abhishek Roy, Shi Qiao, Zhicheng Yin, Rathijit Sen, Subru Krishnan

Engine
DBA

Workload

On-Premise
DBA

DBA

On-Premise

DBA

On-Premise
Need to reach by 10,
can we drive faster?

Sure!

Cloud Query Engines

• Setup, installation, maintenance taken care of
• On-demand provisioning, pay as you go

Cloud Query Engines Need to reach by 10,
can we drive faster?

Sorry, we don’t

have a DBA

Reality Check for customers:

• Lots of services to choose from (even within Azure, GCP, AWS)

• Lot of knobs to tune for good perf and low cost

• Lack of control; and lack of expertise

• And, the DBA is gone!

Reality Check for providers:

• System developers == virtual DBAs!

• Too many cloud users, compared to system developers

• Too many support requests; often redundant

• Less time for feature development

.. ahhh!

Cosmos: big data infra at Microsoft

• 100s of thousands of machines
• Exabytes of data at rest; Petabytes ingress/egress daily
• 500k+ batch jobs / day

• 3B+ tasks executed / day
• 10s of millions interactive queries / day
• 10s of thousands of SCOPE developers
• 1000s of teams

The missing DBA and the growing pain in Cosmos

• Large number of knobs/hints at script, data, plan level
• Only few expert users
• Rest need guidance
• Survey: better tooling for improving SCOPE queries

• Support challenge
• 10s of thousands incidents / years
• 10 incidents per system developer on call
• 100x users compared to system developers
• ~10% growth in SCOPE workload in 2019

The cloud pain

..…..

Database Vendor

Developers

DB

DBA

Users

Customer 1

DB

DBA

Users

Customer 2

DB

DBA

Users

Customer n

Workload Workload Workload
Local in-house experts

AutoAdmins tools

Fewer database instances

On-premise infrastructure

Longer development cycles

Shielded system developers

Expensive DBAs

DS1

Users

DS2 DS3 DSn..…

Developers

Data Services

Workload

Local in-house experts

AutoAdmins tools

Large number of instances

Managed infrastructure

Shorter development cycles

Frontline system developers

Saving DBA Costs

Pain

Pain

Pain

The cloud opportunity

Workload

Workload Workload Workload

Fragmented on-premise workloads

Massive cloud workloads

The Cosmos opportunity

Workload

Massive cloud workloads
Job metadata

name, user, account, submit/start/end times

Query plans
logical, physical, stage graph, estimates

Runtime statistics
Operator-wise observables

Task level logs
start/end events

Machine counters
CPU, IO, etc.

Several TBs of
metadata / day

The case for a workload optimization platform

• DBA-as-a-Service
• Another service in the cloud (easier integration)
• Based on cloud workloads at hand (instance optimization)

• Engine agnostic
• Not specific to different query engines, e.g., SCOPE, Spark, SQL DW, or etc.
• E.g., view selection is still the same problem

• Global optimizations
• Cloud workloads are organized into data pipelines
• People often care about end-to-end aggregate costs in the cloud

Step 1: workload representation
Instrument, log, and collect workload characteristics

Engine-agnostic workload representation

Logical plan Physical plan Stage graph Tasks

Signatures

Denormalized view

Anonymized

(Workload IR)

Log + metrics Log + metrics Log + metrics Log + metrics

Step 2: optimize for patterns

Typical workload patterns

• Consider a simplified 2D space of data and queries

Queries Queries Queries

Da
ta

Da
ta

Da
ta

(a) Recurring (b) Similarity (c) Dependency

Queries Queries Queries

Da
ta

Da
ta

Da
ta

(a) Recurring (b) Similarity (c) Dependency

Queries Queries Queries

Da
ta

Da
ta

Da
ta

(a) Recurring (b) Similarity (c) Dependency
Recurring Similarity Dependency
Query templates appear
over newer datasets

Queries over same
datasets have similarities

Queries depend on datasets
produced by previous queries

Recurring pattern

• Majority of production workloads
• There is a regular ETL needed before other things can happen

• Opportunity to learn from the past
• Examples
• Learned cardinality*
• Learned cost models
• Learned resources
• Learned etc.

* Towards a Learning Optimizer for Shared Clouds. Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi Qiao, Sriram Rao. VLDB 2019.
(a) Cardinality Accuracy (b) Cost Accuracy (c) Subgraph Overlaps

Figure 1: SCOPE workload from Cosmos clusters at Microsoft. Figures 1(a) and 1(b) compare the estimated/actual cardinalities and
costs, while Figure 1(c) motivates the presence of overlaps in production workloads.

(1) We present CARDLEARNER, a learning approach to cardinality
estimation in big data workloads. We motivate the problem of in-
accurate cardinalities from production workloads at Microsoft. We
further illustrate the overlapping nature of production workloads
and how it facilitates learning cardinalities for subgraph templates.
We then describe the key requirements and our design choices for
building such a system in our production setting (Section 2).

(2) We walk through the journey of learning cardinality models
and discuss the trade-offs in various approaches. Instead of learn-
ing one single giant model, we show how a large number of small
models are helpful in achieving high accuracy as well as low over-
head in terms of featurization (Section 3).

(3) We present an exploration technique to consider alternate join
orders and avoid learning bias. We describe an exploratory join or-
dering algorithm that leverages prior executions to quickly prune
the search space and consider only the promising join order candi-
dates over a small number of executions (Section 4).

(4) We describe our feedback loop to inject the predicted cardinal-
ities back to the optimizer. This includes offline workload analysis,
parallel training, and annotations for future queries (Section 5).

(5) Finally, we show a detailed experimental evaluation, including
model evaluation, plan evaluation, performance evaluation, and ex-
ploration evaluation, over production workloads at Microsoft. Our
results show that the learning-based approach is applicable to 60%
of the jobs and 50% of the subgraphs, has 75th percentile cross-
validation error of 1.5%, which is five orders of magnitude lower
than the default optimizer error, and results in plans which have
lower latency (25% less), processing time (55% less), as well as
containers used (60% less). The exploration technique is further
able to find the optimal join orders in few 10s of executions for
fairly sized schemas (Section 6).

2. CARDLEARNER OVERVIEW
Motivation. In this section, we illustrate the problem of cardinal-
ity and cost estimation in SCOPE [9, 47] workloads at Microsoft,
which motivates our approach. SCOPE data processing system pro-
cesses multiple exabytes of data over hundreds of thousands of jobs
running on hundreds of thousands of machines. These jobs are
written in a SQL-like language and authored by thousands of inter-
nal developers, across different business units in Microsoft, to draw
insights from the usage of various Microsoft products. To evaluate
the cardinality and cost estimates in SCOPE, we analyzed one day’s
workload, consisting of tens of thousands of jobs from thousands
of internal users, from one of the largest SCOPE customers, the
Asimov system [4]. The Asimov system uses SCOPE to analyze
telemetry data from millions of Windows devices in a shared cloud
infrastructure, i.e., thousands of users processing shared datasets
using a shared set of compute resources.

Figure 1(a) shows the cumulative distribution of the ratio of es-
timated and actual cardinalities of different subgraphs. Our results
show that a very tiny fraction of the subgraphs have estimated car-
dinalities matching the actual ones, i.e., the ratio is 1. Almost 15%
of the subgraphs underestimate (up to 10,000x) and almost 85%
of the subgraphs overestimate (up to 1 million times!). Figure 1(b)
shows the cumulative distribution of the ratio of estimated and ac-
tual processing costs of different subgraphs. We see that the esti-
mated costs are as much off as the cardinality — up to 100,000x
overestimated and up to 10,000x underestimated than the actual
costs. This is because the cost models are built considering car-
dinality as the key input and therefore estimated costs are directly
correlated with the estimated cardinality. Hence, cardinality is in-
deed the root of the problem.

We also computed the Pearson correlation coefficient between
the estimated and actual cardinalities/costs, and they both turned
out to be very low. As discussed before, estimating cardinalities in
a big data system like SCOPE is challenging for several reasons,
including unstructured data and user defined operators (UDOs). In
its current state, the SCOPE query processing system derives ref-
erence selectivities, for different operator classes, from the most
important workloads. Obviously, these selectivities are not appli-
cable to all scenarios, offering a huge potential for improvement.
Also, making simple adjustments to these selectivities do not help,
as we discuss in detail in Section 3.1.

SCOPE workloads are also overlapping in nature: multiple jobs
access the same datasets in the shared cloud and end up having
common subgraphs across them. These jobs are further recurring
in nature, i.e., they are submitted periodically with different param-
eters and inputs. Figure 1(c) shows the cumulative distribution of
subgraph overlap frequency. We see that 40% of the subgraphs ap-
pear at least twice and 10% appear more than 10 times. Thus, we
could leverage subgraph overlaps to learn cardinality models. By
improving cardinality estimates, our goal is to improve plan quality,
i.e., produce plans with lower costs, and to reduce the resource con-
sumption caused by overestimation, i.e., avoid over-provisioning a
large number of containers, each processing a tiny dataset.

Note that while we focus on big data in shared clouds due to
the presence of overlaps in them, the problem of cardinality es-
timation is also relevant for other clouds, short running jobs, or
even traditional databases. It is equally possible for these other
environments to have overlapping workloads and hence the learn-
ing opportunities. Exploring these will be a part of future work.
Likewise, the over-provisioning problem would be applicable to all
container-based data processing environments. Finally, the cost as-
sociated with improving cardinality estimation is a system cost to
improve system efficiency and attract more customers, even though
each of them might be paying less in the pay-as-you-go model.
Requirements. Our key requirements derived from the current
production setting are as follows:

211

ideal

Similarity pattern

• Very typical in multi-user shared cloud environments
• Cosmos, HDI, Ant Financial, ML workflows, etc.

• Opportunity for multi-query optimization
• Examples
• CloudViews*
• Checkpointing
• Caching
• Etc.

* Computation Reuse in Analytics Job Service at Microsoft. Alekh Jindal, Shi Qiao, Hiren Patel, Jarod Yin, Jieming Di, Malay Bag, Marc Friedman,
Yifung Lin, Konstantinos Karanasos, Sriram Rao. SIGMOD 2018.

* Selecting Subexpressions to Materialize at Datacenter Scale. Alekh Jindal, Konstantinos Karanasos, Sriram Rao, Hiren Patel. VLDB 2018.

Computation Reuse in Analytics Job Service at Microsoft
Alekh Jindal, Shi Qiao, Hiren Patel, Zhicheng Yin, Jieming Di, Malay Bag, Marc Friedman,

Yifung Lin, Konstantinos Karanasos, Sriram Rao
Microsoft

{aljindal,shqiao,hirenp,zhyin,jiedi,malayb,marc.friedman,yifungl,kokarana,sriramra}@microsoft.com

ABSTRACT
Analytics-as-a-service, or analytics job service, is emerging as a
new paradigm for data analytics, be it in a cloud environment or
within enterprises. In this setting, users are not required to manage
or tune their hardware and software infrastructure, and they pay
only for the processing resources consumed per job. However, the
shared nature of these job services across several users and teams
leads to significant overlaps in partial computations, i.e., parts of
the processing are duplicated across multiple jobs, thus generating
redundant costs. In this paper, we describe a computation reuse
framework, coined CloudViews, which we built to address the
computation overlap problem in Microsoft’s SCOPE job service. We
present a detailed analysis from our production workloads to moti-
vate the computation overlap problem and the possible gains from
computation reuse. The key aspects of our system are the follow-
ing: (i) we reuse computations by creating materialized views over
recurring workloads, i.e., periodically executing jobs that have the
same script templates but process new data each time, (ii) we select
the views to materialize using a feedback loop that reconciles the
compile-time and run-time statistics and gathers precise measures
of the utility and cost of each overlapping computation, and (iii) we
create materialized views in an online fashion, without requiring
an offline phase to materialize the overlapping computations.

KEYWORDS
Materialized Views; Computation Reuse; Shared Clouds
ACM Reference Format:
Alekh Jindal, Shi Qiao, Hiren Patel, Zhicheng Yin, Jieming Di, Malay Bag,
Marc Friedman, Yifung Lin, Konstantinos Karanasos, Sriram Rao. 2018.
Computation Reuse in Analytics Job Service at Microsoft. In SIGMOD’18:
2018 International Conference on Management of Data, June 10–15, 2018,
Houston, TX, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3183713.3190656

1 INTRODUCTION
1.1 Background
There is a recent trend of offering analytics-as-a-service, also re-
ferred to simply as job service, by major cloud providers. Examples

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3190656

 0

 20

 40

 60

 80

 100

clus er1 clus er2 clus er3 clus er4 clus er5

P
er

ce
nt

ag
e

Overlapping jobs
Users with overlapping jobs

Overlapping subgraphs

Figure 1: Computation Overlap in different production clus-
ters at Microsoft.

include Google’s BigQuery [15], Amazon’s Athena [3], and Mi-
crosoft’s Azure Data Lake [5]. Similar job services are employed for
the internal needs of large enterprises [11, 49]. These services are
motivated by the fact that setting up and running data analytics is a
major hurdle for enterprises. Although platform as a service (PaaS),
software as a service (SaaS), and more recently database as a ser-
vice (DBaaS) [4, 6] have eased the pain of provisioning and scaling
hardware and software infrastructures, users are still responsible
for managing and tuning their servers. A job service mitigates this
pain by offering server-less analytics capability that does not require
users to provision and manage servers. Instead, the service provider
takes care of managing and tuning a query engine that can scale
instantly and on demand. Users can get started quickly using the
all familiar SQL interface and pay only for the processing used for
each query, in contrast to paying for the entire provisioned server
infrastructure irrespective of the compute resources actually used.

1.2 Problem
Given the above shift from provisioned resources to actually con-
sumed resources, enterprises naturally do not want to duplicate
their resource consumption and pay redundant costs. However, this
is a major challenge in modern enterprise data analytics which
consists of complex data pipelines written by several users, where
parts of the computations end up running over and over again. Such
computation overlap not only adds to the cost, but it is also really
hard for the developers or even the administrators to detect these
overlaps across different scripts and different users.

To illustrate the problem, consider SCOPE [11, 52], which is
the equivalent of Azure Data Lake for internal data analytics at
Microsoft. SCOPE is deployed over hundreds of thousands of ma-
chines, running hundreds of thousands of production analytic jobs
per day that are written by thousands of developers, processing
several exabytes of data per day, and involving several hundred
petabytes of I/O. Almost 40% of the daily SCOPE jobs have com-
putation overlap with one or more other jobs. Likewise, there are

Dependency pattern

• Queries are typically organized in pipelines
• Smaller steps that are easier to build and maintain

• Dependency driven optimizations/analytics*
• Relative importance of jobs for scheduling
• Physical design tuning
• Etc.

* Dependency-driven analytics: A compass for uncharted data oceans. R. Mavlyutov, C. Curino, B. Asipov, and P. Cudré-Mauroux. CIDR 2017.

Step 3: feeding it back

• Actions
• Insights
• Recommendations
• Self-tuning

Feedback Lookup & Action
Rules

Configs

Self-tuning

Compiler Optimizer Scheduler RuntimeQuery Result

Workload Representation
Workload
Optimization

Feedback
Service

Query
Annotations

Query Engine

Annotation: signature --> actions

Extensions
Jar

Optimizer Rule1: Online materialize
Optimizer Rule2: Computation Reuse

SCOPE Modifications to compiler/optimizer

Pluggable extensions from outside

SCOPE
Compiler

flags

Illustration: Scope and Spark query engines

Compiler Optimizer Scheduler RuntimeQuery Result

Query Engine

Feedback
Service

View
Selection

Selected Views

Learn
Cardinality

Cardinality Models

Co
m

m
on

Su
be

xp
re

ss
io

ns

Query Subexpressions IR

Workload Repository SCOPE
Connectors
Parsers
Enumerators

Recurring Signature
Strict Signature

The third axis: people

• Easier for people to play with the query workloads
• Abstracts many of the painful steps
• Allows people to build on top of each other
• Focus more on the workload optimizations

• Enabled several
• Researchers
• Developers
• Interns

SCOPE Spark Hive ..…

Summary
Workload-aware
Query Engines

Sharing Recurring Coordinating

Multi-query Optimization,
e.g., CloudViews

Learned optimizations,
e.g., Learned Cardinality

..…

Mathematical Solvers Machine Learning Graph Analytics

W
or

kl
oa

d
O

pt
im

iz
at

io
n

Patterns

Dependency-driven optimizations,
e.g., physical design for pipeline

Metadata Plans Statistics

Feature Store

Ingest

Parse

Enumerate

Workload Intermediate Representation (IR)

Signatures

Query Plan
Instrumentation

..…

W
or

kl
oa

d
Re

pr
es

en
ta

tio
n

Insights Recommendations Self-tuning

Users

Dashboard Alerts

Feedback Service

Query Annotations

W
or

kl
oa

d
Fe

ed
ba

ck

Feedback

• Gray Systems Labs (GSL)
https://azuredata.microsoft.com/labs/gsl

• GSL@SoCC: 4 papers, 1 poster
• We are hiring!

https://azuredata.microsoft.com/labs/gsl

