
Polystores for Real
REFLECTIONS FROM MICROSOFT

Alekh Jindal

Has the needle moved?

Microsoft then …

SQL
Server SCOPE

Single stop shop for all
data management needs

Single stop shop for
all big data needs

Externally Internally

Giant Monoliths are not the future!

… Microsoft now

SQL
Server SCOPE

SQL Server BDC Cosmos

Spark Spark

Externally Internally

Towards more inclusive data platforms

Azure Synapse: a unified
world for analytics

SQL DW Spark SCOPE

Front end: Security, Monitoring, Management

Orchestration: Azure Data Factory

Notebooks: Python, Scala, T-SQL, .Net

Workload Management: caching, materialized views, ML-for-systems

Disaggregated Storage: Azure Storage

Governance: Azure Purview

Connectors for 95 sources
HTAP link with Cosmos DB

Auto migration from
Netezza, Snowflake, etc.

Business Intelligence: PowerBI

Machine Learning: AML

Resources: Serverless or dedicated

Low-code/no-code: Dataverse

Data model: Common Data Model

An engine-inclusive platform

u All engines are welcome!
u Tightly integrated ecosystem
u Decoupling common functionality into separate layers
u Polystores => Polyengines

Can data platforms be engine-agnostic?

Challenges

u Users need to:
u Be aware of the polyengines

u Carefully pick their engines

u Operate the chosen set of engines

u Can we:
u Interoperate?

u Move data efficiently?

u Pick the best engine for each application?

u Should users really care about the various polyengines?

Microsoft
SCOPECloud

Backends

Dataframe API

Pythonic Environment

Cross Optimization

Common Data
Layer

Magpie
Middleware

PyFroid Compiler

Polyengine
Environments

Azure Synapse
Analytics

SQL Server

Familiar Python surface

Ongoing standardization

Cloud backends

Multi-backend
environments and libraries

Batching Pandas into
large query expressions

Backend selection using
past workloads

Cache commonly seen
dataframes

Scenario: data science at cloud-scale

Compiling Pandas using Ibis

‘week_day’=

‘nyctaxi’

SELECTION

PREDICATES

GREATER [boolean]

COL [float32*] LITERAL [float32]

‘fare_amount’ 0

SELECTION

EXTR. WEEKDAY[i32*]

COL [timestamp]

‘pickup_datetime’

AGGREGATION

BY

COL [i32*]

‘week_day’

METRICS

SUM [i64]

COL [i32*]

‘passenger_count’

Pandas Dataframe Program

Intermediate Representation

Ibis API

Ibis Expression

Lazy
Translation

Pandas

The number of taxi trips per
weekday over the NYC Taxi dataset

1 import pyfroid.pandas as pd # vs import pandas as pd
2 df = pd.read_sql(‘nyctaxi’, con) # fetch data
3 df = df[df.fare_amount > 0] # filter bad rows
4 df[‘day’] = df.pickup_datetime.dt.dayofweek # add features
5 df = df.groupby([‘day’])[‘passenger_count’].sum() # aggregation
6 print(df) # use dataframe

SQL

Postgres MySQL

Spark Pandas ...

... SQL DW SCOPE
Cloud
backends

‘week_day’=

‘nyctaxi’

SELECTION

PREDICATES

GREATER [boolean]

COL [float32*] LITERAL [float32]

‘fare_amount’ 0

SELECTION

EXTR. WEEKDAY[i32*]

COL [timestamp]

‘pickup_datetime’

AGGREGATION

BY

COL [i32*]

‘week_day’

METRICS

SUM [i64]

COL [i32*]

‘passenger_count’

T-SQL Statement

SELECT
(Cost: 0%)

Group by
Aggregates

Shuffle
(Cost: 100%)

Group by
Aggregates

Project Filter Get

SQL DW Execution Plan

Ibis API

Ibis Expression

Lazy
Translation

Pandas

SELECT DATEPART(WEEKDAY, pickup_datetime) AS
day,

SUM(passenger_count)
FROM nyctaxi WHERE fare_amount > 0
GROUP BY DATEPART(WEEKDAY, pickup_datetime)

Compiling Pandas using Ibis

Backend Selection Decisions

0
5

10
15
20
25

10k 100k 1m 5m 10m

Sp
ee

d
up

Number of rows

Speed-up using SQL DW Scale-out using SCOPE/Spark

Data Movement and Caching

u Different data sources together
u Combing hot data from SQL DW with cold

data from Cosmos

u Cache more stationary cold data

u 2-3x speedups

u Different data scientists together
u Collaboration on same datasets

u Cache frequently accessed
u Datasets: 4-11x speedup

u Dataframes: 800-3800x speedup
1

100

10000

100K 1M 10M

Sp
ee
du

p

Input size (rows)

Cached Results
Cached Data
Hot & Cold Data

Remarks
u Polystores have come a long way from academia to industry

u Evidence of engine-inclusive platforms

u Example: Azure Synapse provides
u Polyengines

u Tightly integrated

u Common functionality abstracted out

u Question: can the next level be engine-agnostic?
u Do users really need to be aware of and learn numerous engines?

u Can we make their easier with better cost and performance?

u E.g., bringing data scientists to cloud-scale

