Polystores for Real

REFLECTIONS FROM MICROSOFT

Alekh Jindal

MICrosott 1RE .

Externally

SQL
Server

Single stop shop for all
data management needs

Internally

SCOPE

Single stop shop for
all big data needs

Glant Monoliths are not the futurel

... MiCrose i

Externally Internally
SQL
Server SEOIFE
Spark Spark

SQL Server BDC Cosmos

Towards more inclusive data plaftforms

Azure Synapse: a unified
world for analyfics

Front end: Security, Monitoring, Management
Notebooks: Python, Scala, T-SQL, .Net

Data model: Common Data Model
Orchestration: Azure Data Factory

HTAP link with Cosmos DB
Connectors for 95 sources

Business Intelligence: PowerB|

SQL DW Spark SCOPE Machine Learning: AML

Auto migration from
Low-code/no-code: Dataverse

Netezza, Snowflake, efc.
Disaggregated Storage: Azure Storage
Resources: Serverless or dedicated
Governance: Azure Purview
Workload Management: caching, materialized views, ML-for-systems

An engine-inclusive platform

» All engines are welcomel!
» Tightly infegrated ecosystem
» Decoupling common functionality into separate layers

» Polystores => Polyengines

Can data platforms be engine-agnosfice

Challenges

» Users need to:
» Be aware of the polyengines
» Carefully pick their engines
» Operate the chosen set of engines
» Can we:
» Interoperatee
» Move data efficientlye
» Pick the best engine for each application?

» Should users really care about the various polyengines?

Scenario: data science at cloud-scale

4)

Pythonic Environment ﬁﬂ

Dataframe API

. , , Batching Pandas into
MOQ ple PyFroid Compiler large query expressions

Middleware L Backend selection using

C Opt t
ross Optimization past workloads

Common Data Cache commonly seen
Layer dataframes

Polyengine

! Azure Synapse
Environments

Analytics

b’E

Cloud ° * Microsoft
+7 SCOPE
Backends >

\

Compliling Pandas using lbis

Ibis API

lbis Expression

The number of taxi trips per
weekday over the NYC Taxi dataset

1 import pyfroid.pandas as pd # vs import pandas as pd
2 df = pd.read_sqgl(‘nyctaxi’, con) # fetch data

3 df = df[df.fare_amount > 0] # filter bad rows

4 df[‘day’] = df.pickup_datetime.dt.dayofweek # add features

5 df = df.groupby([‘day’])[‘passenger_count’].sum() # aggregation

6 print(df) # use dataframe

Pandas Dataframe Program

AGGREGATION

TV

SELECTION BY METRICS
l l

SELECTION = ‘week_day’= EXTR. WEEKDAY[i32*] COL [i32%] SUM [i64]

‘nyctaxi’ PREDICATES COL [timestamp] ‘week_day’ COL [i32]

| | |

GREATER [boolean] ‘pickup_datetime’ ‘passenger_count’

/\

COL [float32*] LITERAL [float32]

| |

‘fare_amount’ 0

Intermediate Representation

Compliling Pandas using lbis

AGGREGATION
T
SELECTION BY METRICS
/\
SELECTION = ‘week_day’= EXTR. WEEKDAY[i32*] COL:[BZ*] SUIViI[i64]
/\

‘nyctaxi’ PREDICATES coL [tirr|1estamp] ‘week_day’ COL [i32%]

GREATER! [boolean] ‘picku p_(I:Iatetime’ ’passeng(ler_count’

COL [float32*] LITERAL [float32]

| |

‘fare_amount’ 0

i i SELECT DATEPART(WEEKDAY, pickup_datetime) AS
lbis Expression e (pickup_)

SUM(passenger_count)
FROM nyctaxi WHERE fare_amount >0
GROUP BY DATEPART(WEEKDAY, pickup_datetime)

T-SQL Statement

EHE — &

SELECT Group by
(Cost: 0%) - Aggregates

B

SQL Spark Pandas

| Shuffle
(Cost: 100%)

Pos’rgres MYSQL SQL DW SCOPE S e - — M1
Group by

Project Filter Get

Aggregates

SQL DW Execution Plan

Backend Selection Decisions

Speed-up using SQL DW Scale-out using SCOPE/Spark

N T
IGB 100 GB

m Queryl Query2

10k 100k 1m 5m 10m
Number of rows | .
nput data size

()
%A
S =
2 0
ol =
c S
v =
L 5
S C
e
o
=28
Y nh
c &
et
©
7]
£ &
()

Data Movement and Caching

» Different data sources together

» Combing hot data from SQL DW with cold
data from Cosmos

» Cache more stationary cold data
» 2-3x speedups

» Different data scientists fogether
» Collaboration on same datasets

» Cache frequently accessed
» Datasets: 4-11x speedup
» Dataframes: 800-3800x speedup

B Hot & Cold Data
[[] Cached Data
Cached Results

100

1 IH | mf]

100K 1M 10M

Remarks

» Polystores have come a long way from academia to industry
» Evidence of engine-inclusive platforms

» Example: Azure Synapse provides
» Polyengines
» Tightly integrated
» Common functionality abstracted out

» Question: can the next level be engine-agnostice
» Do users really need to be aware of and learn numerous engines?
» Can we make their easier with better cost and performancee

» E.g., bringing data scientists to cloud-scale

