
Information Systems Group

Relax and Let the Database
do the Partitioning Online

Alekh Jindal, Jens Dittrich

VLDB International Workshop on Real-Time Business Intelligence

- presented by Stefan Schuh

September 2, 2011

Thursday, September 1, 2011

Motivation: Offline Physical Database Design

2

offline workload analysis

offline transformation

BI Applications

Database

Advisory Tools

DBA

Thursday, September 1, 2011

Offline Design Cheats!

• Workloads infrequently change over time

3

• DBAs always available

• Physical design once-in-a-while process

• DBAs make perfect decisions

Thursday, September 1, 2011

Motivation: Offline Physical Database Design

4

offline workload analysis

offline transformation

BI Applications

Database

Advisory Tools

DBA

Thursday, September 1, 2011

Motivation: Online Physical Database Design

5

BI Applications

Database

Sub-Problem Proposed Solution

Indexing
Online Indexing
Database Cracking
Adaptive Indexing

Materialized Views Dynamic Materialized Views

Partitioning WE!

Thursday, September 1, 2011

Challenges in Online Partitioning

• Collecting online workload

6

• Analyzing workload online

• Creating partitions online

• Querying with online workload analysis

Thursday, September 1, 2011

Challenges in Online Partitioning

• Collecting online workload

6

• Analyzing workload online

• Creating partitions online

• Querying with online workload analysis

Thursday, September 1, 2011

What is the Workload?

• offline approach: take the last query log as
workload (static)

7

• online approach: collect incoming queries in a
window and slide it when more queries come
(dynamic)

Thursday, September 1, 2011

What is the Workload?

• offline approach: take the last query log as
workload (static)

7

• online approach: collect incoming queries in a
window and slide it when more queries come
(dynamic)

Q1 Q2 Q3 Q4 Q5

Window Size = 5

Thursday, September 1, 2011

What is the Workload?

• offline approach: take the last query log as
workload (static)

7

• online approach: collect incoming queries in a
window and slide it when more queries come
(dynamic)

Q1 Q2 Q3 Q4 Q5 Q6

Window Size = 5

Thursday, September 1, 2011

What is the Workload?

• offline approach: take the last query log as
workload (static)

7

• online approach: collect incoming queries in a
window and slide it when more queries come
(dynamic)

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Window Size = 5

Thursday, September 1, 2011

What is the Workload?

• offline approach: take the last query log as
workload (static)

7

• online approach: collect incoming queries in a
window and slide it when more queries come
(dynamic)

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Window Size = 5

.....

Thursday, September 1, 2011

a1 a2 a3 a4 a5 a6

How to Express the Partitioning Problem?

• Partitioning unit e.g. a1, a2, a3, a4, a5, a6

8

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

Thursday, September 1, 2011

a1 a2 a3 a4 a5 a6

How to Express the Partitioning Problem?

• Partitioning unit e.g. a1, a2, a3, a4, a5, a6

8

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data. • ordering e.g. a3 a2 a1 a5 a4 a6

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

a1 a2 a3 a4 a5 a6a3 a2 a1 a5 a4 a6

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

Thursday, September 1, 2011

a1 a2 a3 a4 a5 a6

How to Express the Partitioning Problem?

• Partitioning unit e.g. a1, a2, a3, a4, a5, a6

8

a1 a2 a3 a4 a5 a6

0 1 0 0 1] [

• Split line, Split vector e.g. [01001]

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

Online Database Partitioning 5

Definition 2. A partitioning unit ordering � defines an order on the partitioning
units in Pu.

Partitioning units could be attributes along the vertical axis or tuples along the
horizontal axis. However, partitioning at the tuple level may not make sense
due to large number of partitioning units and hence high complexity. There-
fore, we usually consider sets of tuples, based on some key, as partitioning units
(horizontal partitioning). Similarly, we could also consider groups of columns
as partitioning units (vertical partitioning). Below, we introduce some new con-
cepts needed for our one-dimensional partitioning problem statement. First, we
express partitioning as a logical partitioning, to be able to use it in an algorithm.

Definition 3. A split vector S is a row vector of (n-1) split lines in ordering �,
where a split line sj is defined between partitioning units uj and uj+1 as follows:

sj =

(
1 if there is split between uj and uj+1

0 for no split .

A split vector S captures the logical partitioning over a given dataset. For in-
stance, a split vector S1=[0,0,0,1,0,1,1] corresponds to a partitioning of u1, u2, u3,
u4|u5, u6|u7|u8. However, in order to estimate costs using a cost-based query op-
timizer, a split vector still needs to be translated in terms of partitioning units:

Definition 4. A partition pm,r(S,�) is a maximal chunk of adjacent partitioning
units from um to ur, such that split lines sm to sr�1 are all 0.

Definition 5. A partitioning scheme P (S,�) over relation R is a set of disjoint
and complete partitions, i.e.

⇧
x

pmx,rx (S,�) = R,

pmx,rx (S,�) ⌃ pmy,ry (S,�) = �, ⌅x, y such that x ⇤= y.

Partitioning scheme expresses the actual arrangement of partitioning units,
given a split vector. For instance, for split vector S1, partition p1,4(S1,�) is
{u1, u2, u3, u4} and partitioning scheme P (S1,�)={p1,4(S1,�),p5,6(S1,�), p7(S1,
�), p8(S1,�)}. Finally, in order to evaluate partitioning schemes in an online set-
ting, we need to model the online query workload.

Definition 6. An Online Workload Wtk is a stream of queries {q0, ..., qtk�1 , qtk}
seen till time tk, where tk > tk�1 > ... > 0.

Further, let Cest.(Wtk , P (S,�)) denote the execution cost of workload Wtk as
estimated by a cost-based optimizer. Now, we express our one-dimensional par-
titioning problem as follows.

One-dimensional Online Partitioning Problem. Given an online workload
Wtk and partitioning unit ordering �, find the split vector S⇥ that minimizes the
estimated workload execution cost, i.e.

S⇥ = argmin
S

Cest.

�
Wtk , P (S,�)

⇥
. (1)

• ordering e.g. a3 a2 a1 a5 a4 a6

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

a1 a2 a3 a4 a5 a6a3 a2 a1 a5 a4 a6

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

Thursday, September 1, 2011

a1 a2 a3 a4 a5 a6

How to Express the Partitioning Problem?

• Partitioning unit e.g. a1, a2, a3, a4, a5, a6

8

a1 a2 a3 a4 a5 a6

0 1 0 0 1] [

• Split line, Split vector e.g. [01001]

• Partition e.g. (a1, a2)

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

Online Database Partitioning 5

Definition 2. A partitioning unit ordering � defines an order on the partitioning
units in Pu.

Partitioning units could be attributes along the vertical axis or tuples along the
horizontal axis. However, partitioning at the tuple level may not make sense
due to large number of partitioning units and hence high complexity. There-
fore, we usually consider sets of tuples, based on some key, as partitioning units
(horizontal partitioning). Similarly, we could also consider groups of columns
as partitioning units (vertical partitioning). Below, we introduce some new con-
cepts needed for our one-dimensional partitioning problem statement. First, we
express partitioning as a logical partitioning, to be able to use it in an algorithm.

Definition 3. A split vector S is a row vector of (n-1) split lines in ordering �,
where a split line sj is defined between partitioning units uj and uj+1 as follows:

sj =

(
1 if there is split between uj and uj+1

0 for no split .

A split vector S captures the logical partitioning over a given dataset. For in-
stance, a split vector S1=[0,0,0,1,0,1,1] corresponds to a partitioning of u1, u2, u3,
u4|u5, u6|u7|u8. However, in order to estimate costs using a cost-based query op-
timizer, a split vector still needs to be translated in terms of partitioning units:

Definition 4. A partition pm,r(S,�) is a maximal chunk of adjacent partitioning
units from um to ur, such that split lines sm to sr�1 are all 0.

Definition 5. A partitioning scheme P (S,�) over relation R is a set of disjoint
and complete partitions, i.e.

⇧
x

pmx,rx (S,�) = R,

pmx,rx (S,�) ⌃ pmy,ry (S,�) = �, ⌅x, y such that x ⇤= y.

Partitioning scheme expresses the actual arrangement of partitioning units,
given a split vector. For instance, for split vector S1, partition p1,4(S1,�) is
{u1, u2, u3, u4} and partitioning scheme P (S1,�)={p1,4(S1,�),p5,6(S1,�), p7(S1,
�), p8(S1,�)}. Finally, in order to evaluate partitioning schemes in an online set-
ting, we need to model the online query workload.

Definition 6. An Online Workload Wtk is a stream of queries {q0, ..., qtk�1 , qtk}
seen till time tk, where tk > tk�1 > ... > 0.

Further, let Cest.(Wtk , P (S,�)) denote the execution cost of workload Wtk as
estimated by a cost-based optimizer. Now, we express our one-dimensional par-
titioning problem as follows.

One-dimensional Online Partitioning Problem. Given an online workload
Wtk and partitioning unit ordering �, find the split vector S⇥ that minimizes the
estimated workload execution cost, i.e.

S⇥ = argmin
S

Cest.

�
Wtk , P (S,�)

⇥
. (1)

Online Database Partitioning 5

Definition 2. A partitioning unit ordering � defines an order on the partitioning
units in Pu.

Partitioning units could be attributes along the vertical axis or tuples along the
horizontal axis. However, partitioning at the tuple level may not make sense
due to large number of partitioning units and hence high complexity. There-
fore, we usually consider sets of tuples, based on some key, as partitioning units
(horizontal partitioning). Similarly, we could also consider groups of columns
as partitioning units (vertical partitioning). Below, we introduce some new con-
cepts needed for our one-dimensional partitioning problem statement. First, we
express partitioning as a logical partitioning, to be able to use it in an algorithm.

Definition 3. A split vector S is a row vector of (n-1) split lines in ordering �,
where a split line sj is defined between partitioning units uj and uj+1 as follows:

sj =

(
1 if there is split between uj and uj+1

0 for no split .

A split vector S captures the logical partitioning over a given dataset. For in-
stance, a split vector S1=[0,0,0,1,0,1,1] corresponds to a partitioning of u1, u2, u3,
u4|u5, u6|u7|u8. However, in order to estimate costs using a cost-based query op-
timizer, a split vector still needs to be translated in terms of partitioning units:

Definition 4. A partition pm,r(S,�) is a maximal chunk of adjacent partitioning
units from um to ur, such that split lines sm to sr�1 are all 0.

Definition 5. A partitioning scheme P (S,�) over relation R is a set of disjoint
and complete partitions, i.e.

⇧
x

pmx,rx (S,�) = R,

pmx,rx (S,�) ⌃ pmy,ry (S,�) = �, ⌅x, y such that x ⇤= y.

Partitioning scheme expresses the actual arrangement of partitioning units,
given a split vector. For instance, for split vector S1, partition p1,4(S1,�) is
{u1, u2, u3, u4} and partitioning scheme P (S1,�)={p1,4(S1,�),p5,6(S1,�), p7(S1,
�), p8(S1,�)}. Finally, in order to evaluate partitioning schemes in an online set-
ting, we need to model the online query workload.

Definition 6. An Online Workload Wtk is a stream of queries {q0, ..., qtk�1 , qtk}
seen till time tk, where tk > tk�1 > ... > 0.

Further, let Cest.(Wtk , P (S,�)) denote the execution cost of workload Wtk as
estimated by a cost-based optimizer. Now, we express our one-dimensional par-
titioning problem as follows.

One-dimensional Online Partitioning Problem. Given an online workload
Wtk and partitioning unit ordering �, find the split vector S⇥ that minimizes the
estimated workload execution cost, i.e.

S⇥ = argmin
S

Cest.

�
Wtk , P (S,�)

⇥
. (1)

• ordering e.g. a3 a2 a1 a5 a4 a6

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

a1 a2 a3 a4 a5 a6a3 a2 a1 a5 a4 a6

(a1 , a2)

a1 a2 a3 a4 a5 a6

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

Thursday, September 1, 2011

a1 a2 a3 a4 a5 a6

How to Express the Partitioning Problem?

• Partitioning unit e.g. a1, a2, a3, a4, a5, a6

8

a1 a2 a3 a4 a5 a6

0 1 0 0 1] [

• Split line, Split vector e.g. [01001]

• Partition e.g. (a1, a2)

• Partitioning scheme e.g. (a1, a2), (a3, a4, a5), (a6)

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

Online Database Partitioning 5

Definition 2. A partitioning unit ordering � defines an order on the partitioning
units in Pu.

Partitioning units could be attributes along the vertical axis or tuples along the
horizontal axis. However, partitioning at the tuple level may not make sense
due to large number of partitioning units and hence high complexity. There-
fore, we usually consider sets of tuples, based on some key, as partitioning units
(horizontal partitioning). Similarly, we could also consider groups of columns
as partitioning units (vertical partitioning). Below, we introduce some new con-
cepts needed for our one-dimensional partitioning problem statement. First, we
express partitioning as a logical partitioning, to be able to use it in an algorithm.

Definition 3. A split vector S is a row vector of (n-1) split lines in ordering �,
where a split line sj is defined between partitioning units uj and uj+1 as follows:

sj =

(
1 if there is split between uj and uj+1

0 for no split .

A split vector S captures the logical partitioning over a given dataset. For in-
stance, a split vector S1=[0,0,0,1,0,1,1] corresponds to a partitioning of u1, u2, u3,
u4|u5, u6|u7|u8. However, in order to estimate costs using a cost-based query op-
timizer, a split vector still needs to be translated in terms of partitioning units:

Definition 4. A partition pm,r(S,�) is a maximal chunk of adjacent partitioning
units from um to ur, such that split lines sm to sr�1 are all 0.

Definition 5. A partitioning scheme P (S,�) over relation R is a set of disjoint
and complete partitions, i.e.

⇧
x

pmx,rx (S,�) = R,

pmx,rx (S,�) ⌃ pmy,ry (S,�) = �, ⌅x, y such that x ⇤= y.

Partitioning scheme expresses the actual arrangement of partitioning units,
given a split vector. For instance, for split vector S1, partition p1,4(S1,�) is
{u1, u2, u3, u4} and partitioning scheme P (S1,�)={p1,4(S1,�),p5,6(S1,�), p7(S1,
�), p8(S1,�)}. Finally, in order to evaluate partitioning schemes in an online set-
ting, we need to model the online query workload.

Definition 6. An Online Workload Wtk is a stream of queries {q0, ..., qtk�1 , qtk}
seen till time tk, where tk > tk�1 > ... > 0.

Further, let Cest.(Wtk , P (S,�)) denote the execution cost of workload Wtk as
estimated by a cost-based optimizer. Now, we express our one-dimensional par-
titioning problem as follows.

One-dimensional Online Partitioning Problem. Given an online workload
Wtk and partitioning unit ordering �, find the split vector S⇥ that minimizes the
estimated workload execution cost, i.e.

S⇥ = argmin
S

Cest.

�
Wtk , P (S,�)

⇥
. (1)

Online Database Partitioning 5

Definition 2. A partitioning unit ordering � defines an order on the partitioning
units in Pu.

Partitioning units could be attributes along the vertical axis or tuples along the
horizontal axis. However, partitioning at the tuple level may not make sense
due to large number of partitioning units and hence high complexity. There-
fore, we usually consider sets of tuples, based on some key, as partitioning units
(horizontal partitioning). Similarly, we could also consider groups of columns
as partitioning units (vertical partitioning). Below, we introduce some new con-
cepts needed for our one-dimensional partitioning problem statement. First, we
express partitioning as a logical partitioning, to be able to use it in an algorithm.

Definition 3. A split vector S is a row vector of (n-1) split lines in ordering �,
where a split line sj is defined between partitioning units uj and uj+1 as follows:

sj =

(
1 if there is split between uj and uj+1

0 for no split .

A split vector S captures the logical partitioning over a given dataset. For in-
stance, a split vector S1=[0,0,0,1,0,1,1] corresponds to a partitioning of u1, u2, u3,
u4|u5, u6|u7|u8. However, in order to estimate costs using a cost-based query op-
timizer, a split vector still needs to be translated in terms of partitioning units:

Definition 4. A partition pm,r(S,�) is a maximal chunk of adjacent partitioning
units from um to ur, such that split lines sm to sr�1 are all 0.

Definition 5. A partitioning scheme P (S,�) over relation R is a set of disjoint
and complete partitions, i.e.

⇧
x

pmx,rx (S,�) = R,

pmx,rx (S,�) ⌃ pmy,ry (S,�) = �, ⌅x, y such that x ⇤= y.

Partitioning scheme expresses the actual arrangement of partitioning units,
given a split vector. For instance, for split vector S1, partition p1,4(S1,�) is
{u1, u2, u3, u4} and partitioning scheme P (S1,�)={p1,4(S1,�),p5,6(S1,�), p7(S1,
�), p8(S1,�)}. Finally, in order to evaluate partitioning schemes in an online set-
ting, we need to model the online query workload.

Definition 6. An Online Workload Wtk is a stream of queries {q0, ..., qtk�1 , qtk}
seen till time tk, where tk > tk�1 > ... > 0.

Further, let Cest.(Wtk , P (S,�)) denote the execution cost of workload Wtk as
estimated by a cost-based optimizer. Now, we express our one-dimensional par-
titioning problem as follows.

One-dimensional Online Partitioning Problem. Given an online workload
Wtk and partitioning unit ordering �, find the split vector S⇥ that minimizes the
estimated workload execution cost, i.e.

S⇥ = argmin
S

Cest.

�
Wtk , P (S,�)

⇥
. (1)

Online Database Partitioning 5

Definition 2. A partitioning unit ordering � defines an order on the partitioning
units in Pu.

Partitioning units could be attributes along the vertical axis or tuples along the
horizontal axis. However, partitioning at the tuple level may not make sense
due to large number of partitioning units and hence high complexity. There-
fore, we usually consider sets of tuples, based on some key, as partitioning units
(horizontal partitioning). Similarly, we could also consider groups of columns
as partitioning units (vertical partitioning). Below, we introduce some new con-
cepts needed for our one-dimensional partitioning problem statement. First, we
express partitioning as a logical partitioning, to be able to use it in an algorithm.

Definition 3. A split vector S is a row vector of (n-1) split lines in ordering �,
where a split line sj is defined between partitioning units uj and uj+1 as follows:

sj =

(
1 if there is split between uj and uj+1

0 for no split .

A split vector S captures the logical partitioning over a given dataset. For in-
stance, a split vector S1=[0,0,0,1,0,1,1] corresponds to a partitioning of u1, u2, u3,
u4|u5, u6|u7|u8. However, in order to estimate costs using a cost-based query op-
timizer, a split vector still needs to be translated in terms of partitioning units:

Definition 4. A partition pm,r(S,�) is a maximal chunk of adjacent partitioning
units from um to ur, such that split lines sm to sr�1 are all 0.

Definition 5. A partitioning scheme P (S,�) over relation R is a set of disjoint
and complete partitions, i.e.

⇧
x

pmx,rx (S,�) = R,

pmx,rx (S,�) ⌃ pmy,ry (S,�) = �, ⌅x, y such that x ⇤= y.

Partitioning scheme expresses the actual arrangement of partitioning units,
given a split vector. For instance, for split vector S1, partition p1,4(S1,�) is
{u1, u2, u3, u4} and partitioning scheme P (S1,�)={p1,4(S1,�),p5,6(S1,�), p7(S1,
�), p8(S1,�)}. Finally, in order to evaluate partitioning schemes in an online set-
ting, we need to model the online query workload.

Definition 6. An Online Workload Wtk is a stream of queries {q0, ..., qtk�1 , qtk}
seen till time tk, where tk > tk�1 > ... > 0.

Further, let Cest.(Wtk , P (S,�)) denote the execution cost of workload Wtk as
estimated by a cost-based optimizer. Now, we express our one-dimensional par-
titioning problem as follows.

One-dimensional Online Partitioning Problem. Given an online workload
Wtk and partitioning unit ordering �, find the split vector S⇥ that minimizes the
estimated workload execution cost, i.e.

S⇥ = argmin
S

Cest.

�
Wtk , P (S,�)

⇥
. (1)

• ordering e.g. a3 a2 a1 a5 a4 a6

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

a1 a2 a3 a4 a5 a6a3 a2 a1 a5 a4 a6

(a1 , a2)

a1 a2 a3 a4 a5 a6

(a1 , a2) (a3 , a4, a5) (a6) { }

a1 a2 a3 a4 a5 a6

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

Thursday, September 1, 2011

What about Horizontal Partitioning?

• Just rotate the table by 90 degrees

9

a1 a2 a3 a4 a5 a6 r6 r5 r4 r3 r2 r1a1 a2 a3 a4 a5 a6

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

• abstraction allows us to solve both problems

• can be attributes, row-ranges, or any other table slice

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

Thursday, September 1, 2011

Partitioning Problem: What to Analyze?

10

• Partitioning unit e.g. a1, a2, a3, a4, a5, a6

• Split line, Split vector e.g. [01001]

• Partition e.g. (a1, a2)

• Problem statement
Find , such that:

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

Online Database Partitioning 5

Definition 2. A partitioning unit ordering � defines an order on the partitioning
units in Pu.

Partitioning units could be attributes along the vertical axis or tuples along the
horizontal axis. However, partitioning at the tuple level may not make sense
due to large number of partitioning units and hence high complexity. There-
fore, we usually consider sets of tuples, based on some key, as partitioning units
(horizontal partitioning). Similarly, we could also consider groups of columns
as partitioning units (vertical partitioning). Below, we introduce some new con-
cepts needed for our one-dimensional partitioning problem statement. First, we
express partitioning as a logical partitioning, to be able to use it in an algorithm.

Definition 3. A split vector S is a row vector of (n-1) split lines in ordering �,
where a split line sj is defined between partitioning units uj and uj+1 as follows:

sj =

(
1 if there is split between uj and uj+1

0 for no split .

A split vector S captures the logical partitioning over a given dataset. For in-
stance, a split vector S1=[0,0,0,1,0,1,1] corresponds to a partitioning of u1, u2, u3,
u4|u5, u6|u7|u8. However, in order to estimate costs using a cost-based query op-
timizer, a split vector still needs to be translated in terms of partitioning units:

Definition 4. A partition pm,r(S,�) is a maximal chunk of adjacent partitioning
units from um to ur, such that split lines sm to sr�1 are all 0.

Definition 5. A partitioning scheme P (S,�) over relation R is a set of disjoint
and complete partitions, i.e.

⇧
x

pmx,rx (S,�) = R,

pmx,rx (S,�) ⌃ pmy,ry (S,�) = �, ⌅x, y such that x ⇤= y.

Partitioning scheme expresses the actual arrangement of partitioning units,
given a split vector. For instance, for split vector S1, partition p1,4(S1,�) is
{u1, u2, u3, u4} and partitioning scheme P (S1,�)={p1,4(S1,�),p5,6(S1,�), p7(S1,
�), p8(S1,�)}. Finally, in order to evaluate partitioning schemes in an online set-
ting, we need to model the online query workload.

Definition 6. An Online Workload Wtk is a stream of queries {q0, ..., qtk�1 , qtk}
seen till time tk, where tk > tk�1 > ... > 0.

Further, let Cest.(Wtk , P (S,�)) denote the execution cost of workload Wtk as
estimated by a cost-based optimizer. Now, we express our one-dimensional par-
titioning problem as follows.

One-dimensional Online Partitioning Problem. Given an online workload
Wtk and partitioning unit ordering �, find the split vector S⇥ that minimizes the
estimated workload execution cost, i.e.

S⇥ = argmin
S

Cest.

�
Wtk , P (S,�)

⇥
. (1)

Online Database Partitioning 5

Definition 2. A partitioning unit ordering � defines an order on the partitioning
units in Pu.

Partitioning units could be attributes along the vertical axis or tuples along the
horizontal axis. However, partitioning at the tuple level may not make sense
due to large number of partitioning units and hence high complexity. There-
fore, we usually consider sets of tuples, based on some key, as partitioning units
(horizontal partitioning). Similarly, we could also consider groups of columns
as partitioning units (vertical partitioning). Below, we introduce some new con-
cepts needed for our one-dimensional partitioning problem statement. First, we
express partitioning as a logical partitioning, to be able to use it in an algorithm.

Definition 3. A split vector S is a row vector of (n-1) split lines in ordering �,
where a split line sj is defined between partitioning units uj and uj+1 as follows:

sj =

(
1 if there is split between uj and uj+1

0 for no split .

A split vector S captures the logical partitioning over a given dataset. For in-
stance, a split vector S1=[0,0,0,1,0,1,1] corresponds to a partitioning of u1, u2, u3,
u4|u5, u6|u7|u8. However, in order to estimate costs using a cost-based query op-
timizer, a split vector still needs to be translated in terms of partitioning units:

Definition 4. A partition pm,r(S,�) is a maximal chunk of adjacent partitioning
units from um to ur, such that split lines sm to sr�1 are all 0.

Definition 5. A partitioning scheme P (S,�) over relation R is a set of disjoint
and complete partitions, i.e.

⇧
x

pmx,rx (S,�) = R,

pmx,rx (S,�) ⌃ pmy,ry (S,�) = �, ⌅x, y such that x ⇤= y.

Partitioning scheme expresses the actual arrangement of partitioning units,
given a split vector. For instance, for split vector S1, partition p1,4(S1,�) is
{u1, u2, u3, u4} and partitioning scheme P (S1,�)={p1,4(S1,�),p5,6(S1,�), p7(S1,
�), p8(S1,�)}. Finally, in order to evaluate partitioning schemes in an online set-
ting, we need to model the online query workload.

Definition 6. An Online Workload Wtk is a stream of queries {q0, ..., qtk�1 , qtk}
seen till time tk, where tk > tk�1 > ... > 0.

Further, let Cest.(Wtk , P (S,�)) denote the execution cost of workload Wtk as
estimated by a cost-based optimizer. Now, we express our one-dimensional par-
titioning problem as follows.

One-dimensional Online Partitioning Problem. Given an online workload
Wtk and partitioning unit ordering �, find the split vector S⇥ that minimizes the
estimated workload execution cost, i.e.

S⇥ = argmin
S

Cest.

�
Wtk , P (S,�)

⇥
. (1)

Online Database Partitioning 5

Definition 2. A partitioning unit ordering � defines an order on the partitioning
units in Pu.

Partitioning units could be attributes along the vertical axis or tuples along the
horizontal axis. However, partitioning at the tuple level may not make sense
due to large number of partitioning units and hence high complexity. There-
fore, we usually consider sets of tuples, based on some key, as partitioning units
(horizontal partitioning). Similarly, we could also consider groups of columns
as partitioning units (vertical partitioning). Below, we introduce some new con-
cepts needed for our one-dimensional partitioning problem statement. First, we
express partitioning as a logical partitioning, to be able to use it in an algorithm.

Definition 3. A split vector S is a row vector of (n-1) split lines in ordering �,
where a split line sj is defined between partitioning units uj and uj+1 as follows:

sj =

(
1 if there is split between uj and uj+1

0 for no split .

A split vector S captures the logical partitioning over a given dataset. For in-
stance, a split vector S1=[0,0,0,1,0,1,1] corresponds to a partitioning of u1, u2, u3,
u4|u5, u6|u7|u8. However, in order to estimate costs using a cost-based query op-
timizer, a split vector still needs to be translated in terms of partitioning units:

Definition 4. A partition pm,r(S,�) is a maximal chunk of adjacent partitioning
units from um to ur, such that split lines sm to sr�1 are all 0.

Definition 5. A partitioning scheme P (S,�) over relation R is a set of disjoint
and complete partitions, i.e.

⇧
x

pmx,rx (S,�) = R,

pmx,rx (S,�) ⌃ pmy,ry (S,�) = �, ⌅x, y such that x ⇤= y.

Partitioning scheme expresses the actual arrangement of partitioning units,
given a split vector. For instance, for split vector S1, partition p1,4(S1,�) is
{u1, u2, u3, u4} and partitioning scheme P (S1,�)={p1,4(S1,�),p5,6(S1,�), p7(S1,
�), p8(S1,�)}. Finally, in order to evaluate partitioning schemes in an online set-
ting, we need to model the online query workload.

Definition 6. An Online Workload Wtk is a stream of queries {q0, ..., qtk�1 , qtk}
seen till time tk, where tk > tk�1 > ... > 0.

Further, let Cest.(Wtk , P (S,�)) denote the execution cost of workload Wtk as
estimated by a cost-based optimizer. Now, we express our one-dimensional par-
titioning problem as follows.

One-dimensional Online Partitioning Problem. Given an online workload
Wtk and partitioning unit ordering �, find the split vector S⇥ that minimizes the
estimated workload execution cost, i.e.

S⇥ = argmin
S

Cest.

�
Wtk , P (S,�)

⇥
. (1)

Online Database Partitioning 5

Definition 2. A partitioning unit ordering � defines an order on the partitioning
units in Pu.

Partitioning units could be attributes along the vertical axis or tuples along the
horizontal axis. However, partitioning at the tuple level may not make sense
due to large number of partitioning units and hence high complexity. There-
fore, we usually consider sets of tuples, based on some key, as partitioning units
(horizontal partitioning). Similarly, we could also consider groups of columns
as partitioning units (vertical partitioning). Below, we introduce some new con-
cepts needed for our one-dimensional partitioning problem statement. First, we
express partitioning as a logical partitioning, to be able to use it in an algorithm.

Definition 3. A split vector S is a row vector of (n-1) split lines in ordering �,
where a split line sj is defined between partitioning units uj and uj+1 as follows:

sj =

(
1 if there is split between uj and uj+1

0 for no split .

A split vector S captures the logical partitioning over a given dataset. For in-
stance, a split vector S1=[0,0,0,1,0,1,1] corresponds to a partitioning of u1, u2, u3,
u4|u5, u6|u7|u8. However, in order to estimate costs using a cost-based query op-
timizer, a split vector still needs to be translated in terms of partitioning units:

Definition 4. A partition pm,r(S,�) is a maximal chunk of adjacent partitioning
units from um to ur, such that split lines sm to sr�1 are all 0.

Definition 5. A partitioning scheme P (S,�) over relation R is a set of disjoint
and complete partitions, i.e.

⇧
x

pmx,rx (S,�) = R,

pmx,rx (S,�) ⌃ pmy,ry (S,�) = �, ⌅x, y such that x ⇤= y.

Partitioning scheme expresses the actual arrangement of partitioning units,
given a split vector. For instance, for split vector S1, partition p1,4(S1,�) is
{u1, u2, u3, u4} and partitioning scheme P (S1,�)={p1,4(S1,�),p5,6(S1,�), p7(S1,
�), p8(S1,�)}. Finally, in order to evaluate partitioning schemes in an online set-
ting, we need to model the online query workload.

Definition 6. An Online Workload Wtk is a stream of queries {q0, ..., qtk�1 , qtk}
seen till time tk, where tk > tk�1 > ... > 0.

Further, let Cest.(Wtk , P (S,�)) denote the execution cost of workload Wtk as
estimated by a cost-based optimizer. Now, we express our one-dimensional par-
titioning problem as follows.

One-dimensional Online Partitioning Problem. Given an online workload
Wtk and partitioning unit ordering �, find the split vector S⇥ that minimizes the
estimated workload execution cost, i.e.

S⇥ = argmin
S

Cest.

�
Wtk , P (S,�)

⇥
. (1)

Online Database Partitioning 5

Definition 2. A partitioning unit ordering � defines an order on the partitioning
units in Pu.

Partitioning units could be attributes along the vertical axis or tuples along the
horizontal axis. However, partitioning at the tuple level may not make sense
due to large number of partitioning units and hence high complexity. There-
fore, we usually consider sets of tuples, based on some key, as partitioning units
(horizontal partitioning). Similarly, we could also consider groups of columns
as partitioning units (vertical partitioning). Below, we introduce some new con-
cepts needed for our one-dimensional partitioning problem statement. First, we
express partitioning as a logical partitioning, to be able to use it in an algorithm.

Definition 3. A split vector S is a row vector of (n-1) split lines in ordering �,
where a split line sj is defined between partitioning units uj and uj+1 as follows:

sj =

(
1 if there is split between uj and uj+1

0 for no split .

A split vector S captures the logical partitioning over a given dataset. For in-
stance, a split vector S1=[0,0,0,1,0,1,1] corresponds to a partitioning of u1, u2, u3,
u4|u5, u6|u7|u8. However, in order to estimate costs using a cost-based query op-
timizer, a split vector still needs to be translated in terms of partitioning units:

Definition 4. A partition pm,r(S,�) is a maximal chunk of adjacent partitioning
units from um to ur, such that split lines sm to sr�1 are all 0.

Definition 5. A partitioning scheme P (S,�) over relation R is a set of disjoint
and complete partitions, i.e.

⇧
x

pmx,rx (S,�) = R,

pmx,rx (S,�) ⌃ pmy,ry (S,�) = �, ⌅x, y such that x ⇤= y.

Partitioning scheme expresses the actual arrangement of partitioning units,
given a split vector. For instance, for split vector S1, partition p1,4(S1,�) is
{u1, u2, u3, u4} and partitioning scheme P (S1,�)={p1,4(S1,�),p5,6(S1,�), p7(S1,
�), p8(S1,�)}. Finally, in order to evaluate partitioning schemes in an online set-
ting, we need to model the online query workload.

Definition 6. An Online Workload Wtk is a stream of queries {q0, ..., qtk�1 , qtk}
seen till time tk, where tk > tk�1 > ... > 0.

Further, let Cest.(Wtk , P (S,�)) denote the execution cost of workload Wtk as
estimated by a cost-based optimizer. Now, we express our one-dimensional par-
titioning problem as follows.

One-dimensional Online Partitioning Problem. Given an online workload
Wtk and partitioning unit ordering �, find the split vector S⇥ that minimizes the
estimated workload execution cost, i.e.

S⇥ = argmin
S

Cest.

�
Wtk , P (S,�)

⇥
. (1)

• Workload

• ordering e.g. a3 a2 a1 a5 a4 a6

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

Online Database Partitioning 5

Definition 2. A partitioning unit ordering � defines an order on the partitioning
units in Pu.

Partitioning units could be attributes along the vertical axis or tuples along the
horizontal axis. However, partitioning at the tuple level may not make sense
due to large number of partitioning units and hence high complexity. There-
fore, we usually consider sets of tuples, based on some key, as partitioning units
(horizontal partitioning). Similarly, we could also consider groups of columns
as partitioning units (vertical partitioning). Below, we introduce some new con-
cepts needed for our one-dimensional partitioning problem statement. First, we
express partitioning as a logical partitioning, to be able to use it in an algorithm.

Definition 3. A split vector S is a row vector of (n-1) split lines in ordering �,
where a split line sj is defined between partitioning units uj and uj+1 as follows:

sj =

(
1 if there is split between uj and uj+1

0 for no split .

A split vector S captures the logical partitioning over a given dataset. For in-
stance, a split vector S1=[0,0,0,1,0,1,1] corresponds to a partitioning of u1, u2, u3,
u4|u5, u6|u7|u8. However, in order to estimate costs using a cost-based query op-
timizer, a split vector still needs to be translated in terms of partitioning units:

Definition 4. A partition pm,r(S,�) is a maximal chunk of adjacent partitioning
units from um to ur, such that split lines sm to sr�1 are all 0.

Definition 5. A partitioning scheme P (S,�) over relation R is a set of disjoint
and complete partitions, i.e.

⇧
x

pmx,rx (S,�) = R,

pmx,rx (S,�) ⌃ pmy,ry (S,�) = �, ⌅x, y such that x ⇤= y.

Partitioning scheme expresses the actual arrangement of partitioning units,
given a split vector. For instance, for split vector S1, partition p1,4(S1,�) is
{u1, u2, u3, u4} and partitioning scheme P (S1,�)={p1,4(S1,�),p5,6(S1,�), p7(S1,
�), p8(S1,�)}. Finally, in order to evaluate partitioning schemes in an online set-
ting, we need to model the online query workload.

Definition 6. An Online Workload Wtk is a stream of queries {q0, ..., qtk�1 , qtk}
seen till time tk, where tk > tk�1 > ... > 0.

Further, let Cest.(Wtk , P (S,�)) denote the execution cost of workload Wtk as
estimated by a cost-based optimizer. Now, we express our one-dimensional par-
titioning problem as follows.

One-dimensional Online Partitioning Problem. Given an online workload
Wtk and partitioning unit ordering �, find the split vector S⇥ that minimizes the
estimated workload execution cost, i.e.

S⇥ = argmin
S

Cest.

�
Wtk , P (S,�)

⇥
. (1)

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

• Partitioning scheme e.g. (a1, a2), (a3, a4, a5), (a6)

Thursday, September 1, 2011

How to Analyze the Workload?

11

• offline approach: create affinity matrix and
cluster it once, as proposed by Navathe et. al.

• online approach: leverage the affinity idea, but
dynamically update and cluster the affinity matrix

Step 1: Finding Partitioning Unit Ordering

Thursday, September 1, 2011

Offline Partitioning Unit Ordering

• Create affinity matrix having attributes co-occurrences

12

• Cluster affinity matrix to maximize the affinity measure

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

= 404 = 440

Thursday, September 1, 2011

Online Partitioning Unit Ordering

• Update only the referenced in affinity matrix

13

• Re-cluster only the referenced in affinity matrix

SuppKey PartKey Quantity

SuppKey 6 9 6

PartKey 4 6 9

Quantity 9 6 4

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

PartKey Quantity SuppKey

PartKey 9 6 6

Quantity 6 9 4

SuppKey 6 4 9

0
+48

PartKey Quantity SuppKey

PartKey 9 6 6

Quantity 6 9 4

SuppKey 6 4 9

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

(PartKey, SuppKey)

Thursday, September 1, 2011

How to Analyze the Workload?

14

• offline approach: consider all possible split vectors
(brute force)

Step 2: Enumerating Split Vectors

a1 a2 a3 an

Online Database Partitioning 7

WN
tk
⇥ Wtk . After every CheckpointSize number of new queries, AutoStore

triggers partitioning analysis, i.e., it takes a snapshot of the current query win-
dow and the partitioning unit ordering and determines the new partitioning.
Partitioning Unit Clusterer. The partitioning unit clusterer is responsible for
re-clustering the a⇥nity matrix after each incoming query. The a⇥nity matrix
clustering algorithm (in Section 2.1) has the following issues: (i) it recomputes all
a⇥nity values, and (ii) it reclusters the partitioning units from scratch. We need
to adapt it for online partitioning in AutoStore. The core idea is to compute
all a⇥nities once and then for each incoming query update only the a⇥nities
between referenced partitioning units. Note that the change in each of these
a⇥nity values will be 1, due to co-occurrence in the incoming query. For example,
consider TPC-H Lineitem table having the a⇥nity matrix shown at left below.

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

PartKey Quantity SuppKey

PartKey 9 6 6

Quantity 6 9 4

SuppKey 6 4 9

Now, for an incoming
query accessing Part-
Key and SuppKey, only
the a⇥nities between
them are updated (gray cells in the right a⇥nity matrix above). Likewise, we
need to re-cluster only the referenced partitioning units. To do this, we keep
the first referenced partitioning unit at its original position, and for the ith ref-
erenced unit we consider the left and right positions of the (i � 1) referenced
units already placed. We calculate the net contribution of ith referenced unit to
the global a⇥nity measure as: (Cont at the new position) – (Cont at the cur-
rent position). We choose the position that o�ers maximum net contribution to
the global a⇥nity measure and repeat the process for all referenced partitioning
units. To illustrate, in the right a⇥nity matrix above, we first place PartKey and
then consider placing SuppKey to the left (net contribution=48) and right (net
contribution=0) of Partkey. Thus, we will place SuppKey to the left of PartKey.
Partitioning Analyzer. The partitioning analyzer of AutoStore analyzes
partitioning every time CheckpointSize number of queries are added by the
workload monitor. The job of the partitioning analyzer is to take a snapshot of
the query window as input, enumerate and analyze the partitioning candidates,
and emit the best partitioning as output. In the brute force enumeration ap-
proach, we consider all possible values (0 or 1), for each split line in the split
vector S of Equation 1. We then pick the split vector which produces the lowest
estimated workload execution cost Cest.(WN

tk
, P (S,⇤)). Each split vector gives

rise to a di�erent candidate partitioning scheme. The size of the set of candi-
date partitioning schemes is 2n�1. In Section 4 we show how the O2P algorithm
significantly improves partitioning analysis in an online setting.
Partitioning Optimizer. Given the partitioning scheme P ⇥ produced by the
partitioning analyzer, the partitioning optimizer decides whether or not to trans-
form the current partitioning scheme P to P ⇥. The partitioning optimizer con-
siders the expected costs of transforming the partitioning scheme as well as the
expected benefits from it. We discuss these considerations below.
Cost Model. We use a cost model for full table and index scan operations over
one-dimensional partitioned tables. To calculate the partitioning costs, we first

Complexity:

Thursday, September 1, 2011

How to Analyze the Workload?

15

• offline approach: consider all possible split vectors
(brute force)

• online approach: One-dimensional Online
Partitioning (O2P) Algorithm

Technique 1: prune non-referenced partitioning units

Technique 2: consider split vectors greedily

Technique 3: save previous best split vectors using
dynamic programming

Step 2: Enumerating Split Vectors

Thursday, September 1, 2011

Partitioning Unit Pruning

Idea: Prune the unused (non-referenced) in
at most two separate partitions

16

a1 a2 a3 an

Complexity: For p leading and q trailing unused

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

Online Database Partitioning 7

WN
tk
⇥ Wtk . After every CheckpointSize number of new queries, AutoStore

triggers partitioning analysis, i.e., it takes a snapshot of the current query win-
dow and the partitioning unit ordering and determines the new partitioning.
Partitioning Unit Clusterer. The partitioning unit clusterer is responsible for
re-clustering the a⇥nity matrix after each incoming query. The a⇥nity matrix
clustering algorithm (in Section 2.1) has the following issues: (i) it recomputes all
a⇥nity values, and (ii) it reclusters the partitioning units from scratch. We need
to adapt it for online partitioning in AutoStore. The core idea is to compute
all a⇥nities once and then for each incoming query update only the a⇥nities
between referenced partitioning units. Note that the change in each of these
a⇥nity values will be 1, due to co-occurrence in the incoming query. For example,
consider TPC-H Lineitem table having the a⇥nity matrix shown at left below.

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

PartKey Quantity SuppKey

PartKey 9 6 6

Quantity 6 9 4

SuppKey 6 4 9

Now, for an incoming
query accessing Part-
Key and SuppKey, only
the a⇥nities between
them are updated (gray cells in the right a⇥nity matrix above). Likewise, we
need to re-cluster only the referenced partitioning units. To do this, we keep
the first referenced partitioning unit at its original position, and for the ith ref-
erenced unit we consider the left and right positions of the (i � 1) referenced
units already placed. We calculate the net contribution of ith referenced unit to
the global a⇥nity measure as: (Cont at the new position) – (Cont at the cur-
rent position). We choose the position that o�ers maximum net contribution to
the global a⇥nity measure and repeat the process for all referenced partitioning
units. To illustrate, in the right a⇥nity matrix above, we first place PartKey and
then consider placing SuppKey to the left (net contribution=48) and right (net
contribution=0) of Partkey. Thus, we will place SuppKey to the left of PartKey.
Partitioning Analyzer. The partitioning analyzer of AutoStore analyzes
partitioning every time CheckpointSize number of queries are added by the
workload monitor. The job of the partitioning analyzer is to take a snapshot of
the query window as input, enumerate and analyze the partitioning candidates,
and emit the best partitioning as output. In the brute force enumeration ap-
proach, we consider all possible values (0 or 1), for each split line in the split
vector S of Equation 1. We then pick the split vector which produces the lowest
estimated workload execution cost Cest.(WN

tk
, P (S,⇤)). Each split vector gives

rise to a di�erent candidate partitioning scheme. The size of the set of candidate
partitioning schemes is 2n�p�q�1. In Section 4 we show how the O2P algorithm
significantly improves partitioning analysis in an online setting.
Partitioning Optimizer. Given the partitioning scheme P ⇥ produced by the
partitioning analyzer, the partitioning optimizer decides whether or not to trans-
form the current partitioning scheme P to P ⇥. The partitioning optimizer con-
siders the expected costs of transforming the partitioning scheme as well as the
expected benefits from it. We discuss these considerations below.
Cost Model. We use a cost model for full table and index scan operations over
one-dimensional partitioned tables. To calculate the partitioning costs, we first

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

Thursday, September 1, 2011

Idea: Mark only one (best) split vector at a time

17

a1 a2 a3 an

a1 a2 a3 an

a1 a2 a3 an

Complexity: worst case n2

Greedy Split Vector Enumeration

Thursday, September 1, 2011

Idea: save best split vectors in un-split partitions

18

a1 a2 a3 an

a1 a2 a3 an

a1 a2 a3 an

BestBest

Dynamic Programming

Thursday, September 1, 2011

How to Amortize Partitioning Analysis?

• offline approach: querying after computing and
creating partitions

19

Query Cost
Analysis Cost

Query Cost
Analysis Cost

• online approach:
option1: interleave queries with partitioning analysis
option2: queries in a separate thread

Thursday, September 1, 2011

Goals of the Experiments

20

• How much is O2P faster?

• Does greedy partitioning hurt Quality?

• Will our approach work on real systems?

• Can such a system adapt to changing workload ?

Thursday, September 1, 2011

Dynamic Workload

• Mix of OLTP and OLAP style queries

• OLTP: 1% selectivity and 75-100% attributes

• OLAP: 10% selectivity and 1-25% attributes

• Vary the fraction of OLTP-OLAP over time

21
Thursday, September 1, 2011

Does Greedy Partitioning Hurt Quality?

22

Quality: Ratio of expected query costs of optimal
partitioning and the partitioning produced by the algorithm

Online Database Partitioning 11

5 Experiments

The goal of our experiments is three-fold: (1) to evaluate the partitioning analysis
in AutoStore on realistic TPC-H and SSB workloads, (2) to compare the
query performance of a main-memory based implementation of AutoStore
with No and Full Vertical Partitioning, and (3) to evaluate the performance
of AutoStore on a real system: BerkeleyDB. We present each of these in the
following. All experiments were executed on a large computing node having Intel
Xeon 2.4GHz CPU with 64GB of main memory, and running on Ubuntu 10.10
operating system.

The algorithms of Navathe et. al. [23] and Hankins et. al. [17] have simi-
lar complexity. Therefore, we label them as NV/HC. To compare and obtain
a cost analysis of di�erent components in O2P, we switch them on incremen-
tally. Thus, we have five di�erent variants of O2P: (i) only partitioning unit
pruning (O2Pp), (ii) pruning+greedy (O2Ppg), (iii) pruning+greedy+dynamic
(O2Ppgd), (iv) pruning+greedy+dynamic+amortized (O2Ppgda), and (v) prun-
ing +greedy+dynamic+multi-threaded (O2Ppgdm).

5.1 Evaluating Partitioning Analyzer

We now evaluate O2P on multiple benchmark datasets and workloads. Fig-
ure 1(a) shows the number of iterations in di�erent variants of O2P for di�erent
tables in Star Schema Benchmark (SSB). We can see that O2Pp indeed improves
over NV/HC on this realistic workload. O2Ppg and O2Ppgd are even better. Fig-
ure 1(b) shows the iterations in di�erent variants of O2P for TPC-H dataset.
For Lineitem table, O2Ppgd has just 42 iterations compared to 32, 768 itera-
tions in NV/HC. O2Ppgda and O2Ppgdm have the same number of iterations
as O2Ppgd, hence we do not show them in the figure.

Next, we evaluate the actual running time of di�erent O2P variants while
varying the read-only workload. We vary the 100-query workload from OLTP
style (1% tuple selectivity, 75-100% attribute selectivity) to OLAP style (10%
tuple selectivity, 1-25% attribute selectivity) access patterns. We run this ex-
periment over Lineitem (Figure 2(a)) and Customer tables (Figure 2(b)). We
observe that on Lineitem O2Ppgd outperforms NV/HC by up to two orders of
maginitude.

Now let us analyze the quality of partitioning produced by O2P. We define
the quality of partitioning produced by an algorithm as the ratio of the ex-
pected query costs of optimal partitioning and the expected query costs of par-
titioning produced by the algorithm. The table below shows the quality and the

CustomerCustomerCustomer LineitemLineitemLineitem

Optimal Navathe O2P Optimal Navathe O2P

Quality 100% 99.29% 92.76% 100% 97.45% 95.80%

Iterations 100% 14.60% 2.28% 100% 2.42% 0.14%

number of iterations for
optimal, NV, and O2P
partitioning over mixed
OLTP-OLAP workload. We can see that O2P significantly reduces the number
of iterations, without loosing much on partitioning quality.

Finally, we evaluate the scalability of O2P when increasing workload size.
We vary the workload size from 1 to 10, 000 queries consisting of equal number

Thursday, September 1, 2011

How much is O2P Faster?

Setup: TPC-H Lineitem table, 10,000 queries in total

23

12 Alekh Jindal and Jens Dittrich

0.0 524288.0 524288.0

5.0 262144.0 524288.0

10.0 131072.0 524288.0

15.0 65536.0 524288.0

20.0 32768.0 524288.0

25.0 16384.0 524288.0

30.0 8192.0 524288.0

35.0 4096.0 524288.0

40.0 2048.0 524288.0

45.0 1024.0 524288.0

50.0 512.0 524288.0

55.0 256.0 524288.0

60.0 128.0 524288.0

65.0 64.0 524288.0

70.0 32.0 524288.0

75.0 16.0 524288.0

80.0 8.0 524288.0

85.0 4.0 524288.0

90.0 2.0 524288.0

95.0 1.0 524288.0

1

10

100

1000

10000

100000

1000000

0 25 50 75 100

Dead Unit Pruning Brute Force

Percentage Dead Units

It
e
ra

ti
o

n
s

65536.0 4096.0 136.0 45.0

128.0 32.0 28.0 18.0

64.0 32.0 21.0 15.0

256.0 16.0 36.0 21.0

16.0 16.0 10.0 9.0

256.0 64.0 36.0 21.0

64.0 64.0 21.0 15.0

16.0 8.0 10.0 9.0

128.0 128.0 28.0 18.0

32768.0 32768.0 120.0 42.0

8.0 4.0 6.0 6.0

4.0 2.0 3.0 3.0

1

10

100

1000

10000

100000

Part
Supplier

PartSupp
Customer

Lineitem
Nation

Region

#
 I
te

ra
ti
o

n
s

NV/HC O2Pp

O2Ppg O2Ppgd

1

10

100

1000

10000

100000

LineOrder
Customer

Supplier Part Date

#
 I
te

ra
ti
o

n
s

NV/HC O2Pp

O2Ppg O2Ppgd

(a) SSB Benchmark

0.0 524288.0 524288.0

5.0 262144.0 524288.0

10.0 131072.0 524288.0

15.0 65536.0 524288.0

20.0 32768.0 524288.0

25.0 16384.0 524288.0

30.0 8192.0 524288.0

35.0 4096.0 524288.0

40.0 2048.0 524288.0

45.0 1024.0 524288.0

50.0 512.0 524288.0

55.0 256.0 524288.0

60.0 128.0 524288.0

65.0 64.0 524288.0

70.0 32.0 524288.0

75.0 16.0 524288.0

80.0 8.0 524288.0

85.0 4.0 524288.0

90.0 2.0 524288.0

95.0 1.0 524288.0

1

10

100

1000

10000

100000

1000000

0 25 50 75 100

Dead Unit Pruning Brute Force

Percentage Dead Units

It
e
ra

ti
o

n
s

65536.0 4096.0 136.0 45.0

128.0 32.0 28.0 18.0

64.0 32.0 21.0 15.0

256.0 16.0 36.0 21.0

16.0 16.0 10.0 9.0

256.0 64.0 36.0 21.0

64.0 64.0 21.0 15.0

16.0 8.0 10.0 9.0

128.0 128.0 28.0 18.0

32768.0 32768.0 120.0 42.0

8.0 4.0 6.0 6.0

4.0 2.0 3.0 3.0

1

10

100

1000

10000

100000

Part
Supplier

PartSupp
Customer

Lineitem
Nation

Region

#
 I
te

ra
ti
o

n
s

NV/HC O2Pp

O2Ppg O2Ppgd

1

10

100

1000

10000

100000

LineOrder
Customer

Supplier Part Date

#
 I
te

ra
ti
o

n
s

NV/HC O2Pp

O2Ppg O2Ppgd

(b) TPC-H Benchmark

Fig. 1. Number of iterations in di�erent algorithms over SSB and TPC-H benchmarks
on di�erent tables.

0.0 14.934315 15.568234 0.051235 0.050968

0.1 14.36905 14.343422 0.04921 0.024269

0.2 13.686592 13.684466 0.047133 0.023718

0.3 13.123296 13.077786 0.044781 0.02208

0.4 12.454584 12.456661 0.04302 0.020945

0.5 11.81355 11.836774 0.040606 0.02047

0.6 11.228328 11.263937 0.038325 0.020726

0.7 10.622089 10.588341 0.03595 0.018501

0.8 10.087093 10.294272 0.033605 0.017506

0.9 9.369829 9.36957 0.031568 0.015831

1.0 8.765184 0.017162 0.034309 0.01534

0.001

0.01

0.1

1

10

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
n

a
ly

s
is

 T
im

e
 (
s
e
c
)

Fraction of OLAP against OLTP queries

NV/HC O2Pp O2Ppg O2pgd

0.0 0.152998 0.029416 0.005581 0.008805

0.1 0.028032 0.027724 0.007218 0.006585

0.2 0.027576 0.026814 0.005353 0.004095

0.3 0.026278 0.029252 0.006032 0.003887

0.4 0.026676 0.026983 0.005873 0.003829

0.5 0.024225 0.024119 0.004656 0.004637

0.6 0.02451 0.024038 0.005237 0.00353

0.7 0.022747 0.023346 0.005802 0.00463

0.8 0.025298 0.022041 0.005179 0.003223

0.9 0.020942 0.02066 0.004132 0.003185

1.0 0.02152 0.002624 0.004479 0.003086

0

0.001

0.01

0.1

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
n

a
ly

s
is

 T
im

e
 (
s
e
c
)

Fraction of OLAP against OLTP queries

NV/HC O2Pp O2Ppg O2Ppgd

(a) TPC-H Lineitem

0.0 14.934315 15.568234 0.051235 0.050968

0.1 14.36905 14.343422 0.04921 0.024269

0.2 13.686592 13.684466 0.047133 0.023718

0.3 13.123296 13.077786 0.044781 0.02208

0.4 12.454584 12.456661 0.04302 0.020945

0.5 11.81355 11.836774 0.040606 0.02047

0.6 11.228328 11.263937 0.038325 0.020726

0.7 10.622089 10.588341 0.03595 0.018501

0.8 10.087093 10.294272 0.033605 0.017506

0.9 9.369829 9.36957 0.031568 0.015831

1.0 8.765184 0.017162 0.034309 0.01534

0.001

0.01

0.1

1

10

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
n

a
ly

s
is

 T
im

e
 (
s
e
c
)

Fraction of OLAP against OLTP queries

NV/HC O2Pp O2Ppg O2pgd

0.0 0.152998 0.029416 0.005581 0.008805

0.1 0.028032 0.027724 0.007218 0.006585

0.2 0.027576 0.026814 0.005353 0.004095

0.3 0.026278 0.029252 0.006032 0.003887

0.4 0.026676 0.026983 0.005873 0.003829

0.5 0.024225 0.024119 0.004656 0.004637

0.6 0.02451 0.024038 0.005237 0.00353

0.7 0.022747 0.023346 0.005802 0.00463

0.8 0.025298 0.022041 0.005179 0.003223

0.9 0.020942 0.02066 0.004132 0.003185

1.0 0.02152 0.002624 0.004479 0.003086

0

0.001

0.01

0.1

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
n

a
ly

s
is

 T
im

e
 (
s
e
c
)

Fraction of OLAP against OLTP queries

NV/HC O2Pp O2Ppg O2Ppgd

(b) TPC-H Customer

Fig. 2. Running times of di�erent algorithms over changing workload type [100 queries
each].

1 0.306107 0.180548 0.001072 7.51E-04

10 1.114254 1.108406 0.003923 0.002868

100 10.955149 10.930104 0.036908 0.018031

1000 129.451853 130.643162 0.480241 0.223235

10000 1345.45368 1325.67648 4.471151 2.21591

1 0.014318 0.007888 0.001494 0.001608

10 0.03929 0.0229 0.003986 0.003706

100 0.065833 0.025595 0.007868 0.003707

1000 0.281479 0.268856 0.053085 0.041053

10000 3.00536 2.980087 0.62684 0.484902

0

0.01

1

100

10000

1 10 100 1000 10000

A
n

a
ly

s
is

 T
im

e
 (
s
e
c
)

Number of queries in workload

NV/HC O2Pp

O2Ppg O2Ppgd

0.001

0.01

0.1

1

10

1 10 100 1000 10000

A
n

a
ly

s
is

 T
im

e
 (
s
e
c
)

Number of queries in workload

NV/HC O2Pp

O2Ppg O2Ppgd

(a) TPC-H Lineitem

1 0.306107 0.180548 0.001072 7.51E-04

10 1.114254 1.108406 0.003923 0.002868

100 10.955149 10.930104 0.036908 0.018031

1000 129.451853 130.643162 0.480241 0.223235

10000 1345.45368 1325.67648 4.471151 2.21591

1 0.014318 0.007888 0.001494 0.001608

10 0.03929 0.0229 0.003986 0.003706

100 0.065833 0.025595 0.007868 0.003707

1000 0.281479 0.268856 0.053085 0.041053

10000 3.00536 2.980087 0.62684 0.484902

0

0.01

1

100

10000

1 10 100 1000 10000

A
n
a
ly

s
is

 T
im

e
 (
s
e
c
)

Number of queries in workload

NV/HC O2Pp

O2Ppg O2Ppgd

0.001

0.01

0.1

1

10

1 10 100 1000 10000

A
n
a
ly

s
is

 T
im

e
 (
s
e
c
)

Number of queries in workload

NV/HC O2Pp

O2Ppg O2Ppgd

(b) TPC-H Customer

Fig. 3. Running time of di�erent algorithms over varying workload size [with 50%
OLAP, 50%OLTP queries].

of OLTP and OLAP-style queries. Figures 3(a) and 3(b) show the scalability of
O2P over TPC-H Lineitem and Customer tables respectively. We can see that
all variants of O2P algorithm scale linearly with the workload size. Hence, from
now on we will only consider O2Ppgd algorithm.

Thursday, September 1, 2011

Can such a System Adapt to Changing Workload ?

Setup: Universal relation de-normalized from TPC-H schema *, SF 1

24

Online Database Partitioning 13

Row Column AutoStore

(Dynamic)

AutoStore

(Dynamic

+Multiple

Threads)

AutoStore

(Dynamic

+Amortized)

0.0 29.5160282 18.0036407 31.5713141 30.7174521 31.0165739

0.01 29.5580543 18.121008 17.7554633 17.9971831 19.5413709

0.02 29.6602127 18.2521591 17.7946927 17.892772 17.7002679

0.03 29.7383647 18.2827567 17.9116381 17.9626927 17.7996613

0.04 29.7620162 18.4432967 17.8976242 18.0072833 17.8303774

0.05 29.8096575 18.509177 18.1783395 18.1321525 17.9721919

0.06 29.8628561 18.5588799 17.3807727 17.2456661 18.2829705

0.07 29.8110034 18.6407028 17.3879216 17.2811072 18.3357757

0.08 29.986822 18.8142683 17.4086524 17.3583007 18.4059206

0.09 29.8490574 18.6228154 17.4378938 17.2881777 18.7579874

0.1 29.9233747 18.7579598 17.5015735 17.2877976 18.7871441

0.11 30.127755 18.9109634 17.5466034 17.3928342 18.7412782

0.12 30.0972551 19.0165017 17.5335251 17.4164478 18.8875045

0.13 30.0318513 19.0242067 17.5521099 17.4411491 18.9026489

0.14 29.9435145 19.0818675 17.5033467 17.3926517 19.1287986

0.15 30.1116275 19.2562807 17.5951869 17.4716804 19.1500093

0.16 30.2205533 19.3453499 17.6248784 17.5446147 19.1712984

0.17 30.1101365 19.4222058 17.6546107 17.5688369 19.2657084

0.18 30.203371 19.5228705 17.6764776 17.5902968 19.2799007

0.19 30.361289 19.6798057 17.7950686 17.5915144 19.3339801

0.2 30.2905679 19.4882063 17.7014098 17.5964668 19.8805794

0.21 30.2442531 19.6269891 17.8087427 17.6984316 19.6425598

0.22 30.2687404 19.7099345 17.8301571 17.7080282 19.6012517

0.23 30.3962779 19.8258537 17.9315959 17.7514308 19.6478908

0.24 30.3536238 19.8919188 17.9053318 17.7517425 19.7489729

0.25 30.5980951 20.0166782 17.9574388 17.8924229 19.7934981

0.26 30.5262955 20.1309304 17.9806989 17.8978616 19.77312

0.27 30.7682444 20.2753006 18.0464528 18.0821492 19.8153177

0.28 30.6071426 20.2936028 17.9980631 17.998899 20.0582533

0.29 30.8283528 20.6294641 18.1827034 18.0466724 19.9447297

0.3 30.8090411 20.502721 18.140978 17.9715505 20.1089739

0.31 30.9495912 20.6265345 18.1923206 18.117088 20.0845561

0.32 30.9796028 20.8017265 18.2210402 18.0768144 20.1325389

0.33 31.0485869 20.7706302 18.2329343 18.0493261 20.2407681

0.34 31.0407692 21.0915937 18.3402345 18.1673789 20.2543201

0.35 31.144348 21.1378838 18.3387385 18.3020098 20.2421328

0.36 31.2471566 21.2323806 18.4261356 18.3573459 20.2955341

0.37 31.5176076 21.3677985 18.4437909 18.3515841 20.2826855

0.38 31.5170748 21.3877596 18.5120532 18.4211824 20.2925852

0.39 31.6247491 21.5688391 18.5688994 18.398908 20.3043926

0.4 31.4080286 21.4077299 18.5219744 18.4614336 20.7472513

0.41 31.5095417 21.5865456 18.5394361 18.3624086 20.7686208

0.42 31.5623496 21.6698007 18.623534 18.4813856 20.7958855

0.43 31.5589495 21.8024645 18.6695073 18.6262265 20.8028121

0.44 31.6551088 22.0302349 18.7158376 18.6821995 20.7985295

0.45 31.7942519 22.1902497 18.7971196 18.5761983 20.8144244

0.46 32.0484596 22.2068321 18.840386 18.748263 20.8253964

0.47 32.1196752 22.3955855 18.9015756 18.7929432 20.8562001

0.48 32.0854577 22.4513708 18.9286457 18.8078146 20.9058339

0.49 32.2540297 22.6500485 19.009396 18.9081364 20.9137154

0.5 32.3452154 22.8078607 19.0543344 18.9997602 20.8577675

0.51 32.1984135 22.8657698 19.1303246 19.1083354 20.9697276

0.52 32.350701 22.9153727 19.1313279 19.0370209 20.9223788

0.53 32.5435492 23.0583818 19.2325062 19.1032123 20.9101434

0.54 32.6735576 23.3362446 19.2516426 19.217038 20.940475

0.55 32.552396 23.4563349 19.3232651 19.1768832 21.0115672

0.56 32.6238177 23.6287475 19.3999717 19.2444434 21.0281839

0.57 32.6343446 23.6672928 19.4144155 19.2367032 21.0308333

0.58 32.9622293 24.1382793 19.5439991 19.5294892 20.821399

0.59 32.7511433 23.8559734 19.5492387 19.4629768 21.084037

0.6 32.9264316 24.089838 19.5876447 19.5320518 21.0917905

0.61 33.0698501 24.4292789 19.7243929 19.6553107 20.6758448

0.62 33.168009 24.4680939 19.82667 19.6547532 20.7431475

0.63 33.2224517 24.5151767 19.8068379 19.7366984 20.7323905

0.64 33.4357509 24.7341065 19.8783663 19.6845933 20.7522505

0.65 33.3930646 24.8372442 19.917921 19.7695783 20.8400873

0.66 33.5303465 24.9632981 20.0047086 19.9045067 20.7835932

0.67 33.6923757 25.3076689 20.063782 19.7589208 20.833773

0.68 33.8358905 25.5539383 20.1410967 20.202543 20.7731845

0.69 33.8346817 25.4036351 20.1673612 20.2088703 20.7626379

0.7 33.9215381 25.6175114 20.259521 20.2259538 20.801992

0.71 34.0084622 25.6442176 20.2815966 20.1349589 20.8182536

0.72 34.0708078 25.8614359 20.3039862 20.0260351 20.786768

0.73 34.2934619 26.0934413 20.4468093 20.2851182 20.6454147

0.74 34.3471748 26.1951862 20.559109 20.2998662 20.6412978

0.75 34.5098715 26.2744047 20.5391418 20.6661956 20.6169417

0.76 34.5671412 26.4468068 20.6412289 20.3847329 20.7182808

0.77 34.6278474 26.6301248 20.683684 20.501638 20.576863

0.78 34.8581334 26.862893 20.7866559 20.5345568 20.6176143

0.79 34.8954254 26.9453207 20.8180914 20.6762437 20.3639128

0.8 35.2385642 27.5792862 20.9749488 20.8158613 20.124524

0.81 35.3803901 27.58027 21.0455807 20.6797617 20.1734712

0.82 35.2973231 27.5664835 21.1078359 20.6847115 20.1554215

0.83 35.3575967 27.7699208 21.0634655 20.9795234 20.1734592

0.84 35.5383962 27.9250531 21.2429039 20.9881555 20.0975674

0.85 35.6503862 28.1381095 21.2652928 21.0785681 20.1237122

0.86 35.6316854 28.1840755 21.412775 21.0817759 20.1440614

0.87 35.871253 28.3100044 21.4163551 21.2822089 19.9139578

0.88 35.9904642 28.5329124 21.4780159 21.3634358 19.9330221

0.89 36.1787784 28.8745663 21.6697932 21.4029945 19.8994188

0.9 36.2934756 28.9925247 21.6699028 21.4882946 19.891663

0.91 36.3481673 29.0280793 21.7511504 21.3909959 19.7241633

0.92 36.6693442 29.4854091 21.9296451 21.4745103 19.5589572

0.93 36.6826939 29.5850697 21.9501976 21.5812988 19.5827711

0.94 36.7598693 29.6991971 22.0243165 21.6223046 19.4704749

0.95 36.8280572 29.8223523 22.0006098 21.9065619 19.5123962

0.96 37.0276031 30.078906 22.1966999 21.8613453 19.2839319

0.97 37.1074597 30.1981601 22.2346602 19.1497048 19.2890373

0.98 37.2318557 30.3985654 22.3079142 19.8883805 19.2280625

0.99 37.3510697 30.5521908 22.3968707 19.8126922 19.2439965

1.0 37.3986861 30.6678561 22.4038221 20.0005802 19.2738097

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
o

rk
lo

a
d

 E
x
e
c
u

ti
o

n
 T

im
e
 (
s
e
c
)

Fraction of OLAP against OLTP queries

No Partitioning Full Vertical Partitioning
AutoStore (O2Ppgd) AutoStore (O2Ppgdm)
AutoStore (O2Ppgda)

(a) Comparing di�erent methods

Row Store Column Store Auto Store

(100-500)

Auto Store

(200-1000)

Auto Store

(300-1500)

Auto Store

(400-2000)

0.0 29.5160282 18.0036407 31.0165739 39.2146286 31.2420529 31.04643

0.01 29.5580543 18.121008 19.5413709 39.3341313 31.2249557 31.1190141

0.02 29.6602127 18.2521591 17.7002679 19.9429901 31.2295562 31.1279538

0.03 29.7383647 18.2827567 17.7996613 16.9315949 18.8936382 31.1040129

0.04 29.7620162 18.4432967 17.8303774 16.9177847 16.9154286 19.9821079

0.05 29.8096575 18.509177 17.9721919 18.2379123 17.2886596 18.0809679

0.06 29.8628561 18.5588799 18.2829705 18.2611734 17.3319564 18.1359707

0.07 29.8110034 18.6407028 18.3357757 18.3391796 17.5271102 18.2460554

0.08 29.986822 18.8142683 18.4059206 18.343532 18.690256 18.327557

0.09 29.8490574 18.6228154 18.7579874 18.733596 19.1411158 18.2216

0.1 29.9233747 18.7579598 18.7871441 18.7058578 19.1255401 18.3074043

0.11 30.127755 18.9109634 18.7412782 18.7421484 19.181012 18.3303041

0.12 30.0972551 19.0165017 18.8875045 19.2103724 19.3612125 18.3102388

0.13 30.0318513 19.0242067 18.9026489 19.2538302 19.3779192 18.4051604

0.14 29.9435145 19.0818675 19.1287986 19.4181062 19.6038137 18.3045641

0.15 30.1116275 19.2562807 19.1500093 19.4697309 19.6375441 18.4712534

0.16 30.2205533 19.3453499 19.1712984 19.4076697 19.6487602 18.5467904

0.17 30.1101365 19.4222058 19.2657084 19.4938928 19.8527125 18.522754

0.18 30.203371 19.5228705 19.2799007 19.4854385 20.084752 18.6461158

0.19 30.361289 19.6798057 19.3339801 19.5719834 20.1399449 18.6929292

0.2 30.2905679 19.4882063 19.8805794 19.8315527 20.6686605 18.6153614

0.21 30.2442531 19.6269891 19.6425598 19.8000371 20.368719 18.6773988

0.22 30.2687404 19.7099345 19.6012517 19.9017975 20.4294938 18.7559431

0.23 30.3962779 19.8258537 19.6478908 19.920448 20.4442329 18.8192625

0.24 30.3536238 19.8919188 19.7489729 19.9910204 20.5586582 18.8425849

0.25 30.5980951 20.0166782 19.7934981 20.0151199 20.6009185 18.8543226

0.26 30.5262955 20.1309304 19.77312 20.040755 20.631445 18.9317371

0.27 30.7682444 20.2753006 19.8153177 20.0591445 20.6522568 19.0882733

0.28 30.6071426 20.2936028 20.0582533 20.2526247 20.8403935 18.9722707

0.29 30.8283528 20.6294641 19.9447297 20.1480514 20.8537445 19.1391575

0.3 30.8090411 20.502721 20.1089739 20.3112777 20.877902 19.0536013

0.31 30.9495912 20.6265345 20.0845561 20.3016315 20.9638476 19.0970917

0.32 30.9796028 20.8017265 20.1325389 20.3292015 20.9559057 19.1805412

0.33 31.0485869 20.7706302 20.2407681 20.4173911 21.1082159 19.2435781

0.34 31.0407692 21.0915937 20.2543201 20.4963505 21.1494113 19.3408104

0.35 31.144348 21.1378838 20.2421328 20.4724905 21.1146168 19.3540315

0.36 31.2471566 21.2323806 20.2955341 20.4594483 21.1764128 19.3724849

0.37 31.5176076 21.3677985 20.2826855 20.5121285 21.1802911 19.453771

0.38 31.5170748 21.3877596 20.2925852 20.586604 21.2470517 19.5758273

0.39 31.6247491 21.5688391 20.3043926 20.6009784 21.1981586 19.6443805

0.4 31.4080286 21.4077299 20.7472513 20.8801572 21.6181419 19.5442228

0.41 31.5095417 21.5865456 20.7686208 20.917665 21.604369 19.6016625

0.42 31.5623496 21.6698007 20.7958855 20.9324019 21.6854001 19.6061572

0.43 31.5589495 21.8024645 20.8028121 20.9309388 21.6694617 19.7556644

0.44 31.6551088 22.0302349 20.7985295 20.9705002 21.7078297 19.8078817

0.45 31.7942519 22.1902497 20.8144244 21.0177094 21.7045091 19.9042337

0.46 32.0484596 22.2068321 20.8253964 20.9928639 21.7698056 19.9807293

0.47 32.1196752 22.3955855 20.8562001 21.0448983 21.7572901 20.0746296

0.48 32.0854577 22.4513708 20.9058339 21.0594183 21.8029744 20.0927772

0.49 32.2540297 22.6500485 20.9137154 21.0920813 21.8332627 20.1895016

0.5 32.3452154 22.8078607 20.8577675 21.1685917 21.8192514 20.2072052

0.51 32.1984135 22.8657698 20.9697276 21.1592075 21.84647 20.3089854

0.52 32.350701 22.9153727 20.9223788 21.1660188 21.8620888 20.3535497

0.53 32.5435492 23.0583818 20.9101434 21.1943975 21.8889898 20.4198095

0.54 32.6735576 23.3362446 20.940475 21.2126745 21.9150279 20.4776288

0.55 32.552396 23.4563349 21.0115672 21.3114762 21.9270615 20.5968327

0.56 32.6238177 23.6287475 21.0281839 21.2703236 21.9650119 20.6828972

0.57 32.6343446 23.6672928 21.0308333 21.318652 21.9402112 20.7000149

0.58 32.9622293 24.1382793 20.821399 21.2086353 21.8037952 20.8999217

0.59 32.7511433 23.8559734 21.084037 21.3676335 22.0240115 20.8793227

0.6 32.9264316 24.089838 21.0917905 21.33121 22.0536561 20.9591697

0.61 33.0698501 24.4292789 20.6758448 21.1626771 21.700287 21.1327852

0.62 33.168009 24.4680939 20.7431475 21.1581465 21.7167382 21.1951714

0.63 33.2224517 24.5151767 20.7323905 21.2006499 21.7737078 21.3308959

0.64 33.4357509 24.7341065 20.7522505 21.2590069 21.7526453 21.4110871

0.65 33.3930646 24.8372442 20.8400873 21.2560431 21.7772175 21.3189638

0.66 33.5303465 24.9632981 20.7835932 21.2908117 21.8046593 21.4385653

0.67 33.6923757 25.3076689 20.833773 21.247672 21.7572341 21.6254135

0.68 33.8358905 25.5539383 20.7731845 21.2493427 21.7405265 21.7267372

0.69 33.8346817 25.4036351 20.7626379 21.2500194 21.7294093 21.740994

0.7 33.9215381 25.6175114 20.801992 21.2963804 21.7343347 21.8445549

0.71 34.0084622 25.6442176 20.8182536 21.3157413 21.7458019 21.9609258

0.72 34.0708078 25.8614359 20.786768 21.3292919 21.7974298 22.0134132

0.73 34.2934619 26.0934413 20.6454147 21.2311151 21.5837809 22.135924

0.74 34.3471748 26.1951862 20.6412978 21.2892576 21.587849 22.2872025

0.75 34.5098715 26.2744047 20.6169417 21.2170668 21.6281014 22.3191425

0.76 34.5671412 26.4468068 20.7182808 21.2856712 21.6379523 22.3830177

0.77 34.6278474 26.6301248 20.576863 21.2239543 21.5162011 22.5375235

0.78 34.8581334 26.862893 20.6176143 21.2964379 21.5536716 22.6844232

0.79 34.8954254 26.9453207 20.3639128 21.1265711 21.3771595 22.7056249

0.8 35.2385642 27.5792862 20.124524 20.9452986 21.1895906 22.9355864

0.81 35.3803901 27.58027 20.1734712 21.0301621 21.2228252 23.007119

0.82 35.2973231 27.5664835 20.1554215 21.0168394 21.2090694 23.1094183

0.83 35.3575967 27.7699208 20.1734592 20.9583883 21.2257603 23.0601116

0.84 35.5383962 27.9250531 20.0975674 21.0271952 21.1329698 23.2090003

0.85 35.6503862 28.1381095 20.1237122 20.9892296 21.1462563 23.2612432

0.86 35.6316854 28.1840755 20.1440614 21.063918 21.1781222 23.3168698

0.87 35.871253 28.3100044 19.9139578 20.9152243 20.9716039 23.5949492

0.88 35.9904642 28.5329124 19.9330221 20.8527251 20.9650205 23.6178331

0.89 36.1787784 28.8745663 19.8994188 20.9077596 20.8836913 23.8416257

0.9 36.2934756 28.9925247 19.891663 20.9718227 20.9019475 23.9525604

0.91 36.3481673 29.0280793 19.7241633 20.8356421 20.7337138 23.981622

0.92 36.6693442 29.4854091 19.5589572 20.6774122 20.5683004 24.2418306

0.93 36.6826939 29.5850697 19.5827711 20.7748681 20.5463242 24.2269548

0.94 36.7598693 29.6991971 19.4704749 20.6927417 20.4771118 24.3624584

0.95 36.8280572 29.8223523 19.5123962 20.7124146 20.5177585 24.4167849

0.96 37.0276031 30.078906 19.2839319 20.519774 20.314125 24.7292648

0.97 37.1074597 30.1981601 19.2890373 20.6275913 20.3304867 24.6582572

0.98 37.2318557 30.3985654 19.2280625 20.5889631 20.2299187 24.853706

0.99 37.3510697 30.5521908 19.2439965 20.5951552 20.22988 24.8645256

1.0 37.3986861 30.6678561 19.2738097 20.6480136 20.2564295 24.981312

3299.11798 2360.6072 2033.61513

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
o

rk
lo

a
d

 E
x
e
c
u
ti
o

n
 T

im
e
 (
s
e
c
)

Fraction of OLAP against OLTP queries

No Partitioning Full Vertical Partitioning
AutoStore (500) AutoStore (1000)
AutoStore (1500) AutoStore (2000)

(b) Varying query window size

Fig. 4. Comparison of No Partitioning, Full Vertical Partitioning, and AutoStore in
main-memory implementation.

5.2 Evaluating Query Performance

Now we evaluate the query execution performance of AutoStore in comparison
with No and Full Vertical Partitioning. In this evaluation we use a main-memory
implementation of AutoStore in Java. In order to show how AutoStore
adapts vertical partitioning to the query workload, we use a universal relation
de-normalized from a variant of the TPC-H schema [28]. Similar as in [28], we
choose a vertical partition with part key, revenue, order quantity, lineitem price,
week of year, month, supplier nation, category, brand, year, and day of week for
our experiments. Further, since we consider equal size attributes only, we map
all attributes to integer values, while preserving the same domain cardinality.
We use a scale factor (SF) of 1.

Figure 4(a) shows the performance of No Partitioning, Full Vertical Partition-
ing, AutoStore with O2Ppgd, AutoStore with O2P pgdm and AutoStore
with O2Ppgda. We vary the fraction of data accessed, i.e. both the attribute
and tuple selectivity along the x-axis. We vary the OLTP/OLAP read access
patterns as in Section 5.1, with a step size of 0.01%. From the figure we can
see that AutoStore automatically adapts to the changing workload, i.e. even
though it starts with no-partitioning configuration, AutoStore matches or im-
proves full vertical partitioning performance. Therefore, from now on we consider
only O2Ppgda. Figure 4(b) shows the performance of AutoStore when vary-
ing query window size. From the figure we observe that larger query windows,
e.g. query window of 2000 after 70% OLAP, become slower. This is because the
partitioning analyzer has to now estimate the costs of more number of queries
while analyzing partitioning schemes.

5.3 Evaluation over Real System

Modern database systems, e.g. PostgreSQL, have a very strong coupling between
their query processors and data stores. This makes it almost impossible to replace
the underlying data store without touching the entire software stack on top. This

* Constant-Time Query Processing, V. Raman et.al., ICDE 2008
Thursday, September 1, 2011

Will our Approach Work on Real System?

Setup: TPC-H Customer table, SF 1, BerkeleyDB

25

14 Alekh Jindal and Jens Dittrich1 0.0 1.10104097 3.16241335 0.4617237 0.2702429 0.1914808

2 0.01 48.03633 218.590377 16.6462322 16.5720122 0.07421999

3 0.02 33.4628748 70.8333865 33.0150438 32.918543 0.09650083

4 0.03 46.577773 39.7587641 46.5998522 46.4218261 0.17802616

5 0.04 62.5166834 45.819664 480.831249 66.7025308 414.128718

6 0.05 70.7936541 111.802544 45.7057058 45.4713096 0.23439627

7 0.06 87.1835246 119.820835 55.907296 55.6732672 0.23402881

8 0.07 100.733242 204.852131 64.5189923 64.266718 0.25227426

9 0.08 117.541628 113.738181 74.9244797 74.6915594 0.23292025

10 0.09 116.96748 89.9282336 127.817251 127.513913 0.30333833

11 0.1 133.234046 96.2336736 85.8268426 85.5944534 0.23238924

12 0.11 149.514318 209.525841 140.171332 139.961541 0.20979117

13 0.12 163.046091 144.207412 105.020561 104.811375 0.20918603

14 0.13 179.23428 139.080399 168.412621 168.202796 0.20982487

15 0.14 187.376288 134.709773 121.594252 121.363498 0.23075388

16 0.15 204.255256 170.290007 131.144421 130.904426 0.23999441

17 0.16 220.067243 157.091031 199.328176 198.981325 0.34685025

18 0.17 234.002922 212.155931 150.68929 150.4551 0.23419076

19 0.18 250.293879 181.502024 160.364105 160.140549 0.22355562

20 0.19 266.179598 1065.2791 233.230572 233.008063 0.22250868

21 0.2 255.591764 276.287656 165.357368 165.135239 0.22212884

22 0.21 272.126042 203.640377 217.747774 217.517608 0.23016683

23 0.22 287.988832 246.621752 232.484503 232.250457 0.23404572

24 0.23 304.692936 294.621143 264.056052 263.768979 0.28707314

25 0.24 318.049283 265.768806 206.026085 205.806819 0.21926589

26 0.25 334.91661 257.506134 279.696897 279.50125 0.19564663

27 0.26 350.700154 251.283254 324.649696 324.455038 0.19465706

28 0.27 366.675829 284.178867 282.177722 281.983881 0.19384023

29 0.28 375.304642 330.313832 282.649834 282.455785 0.19404968

30 0.29 399.391832 316.431526 317.889574 317.698195 0.19137938

31 0.3 407.510241 311.286451 309.260755 309.054464 0.20629061

32 0.31 423.667679 331.568571 346.660672 346.327184 0.33348794

33 0.32 440.096674 350.358678 387.34666 387.137458 0.20920234

34 0.33 453.496327 377.237025 434.799944 434.578785 0.22115893

35 0.34 485.902154 1302.83461 378.531347 378.2816 0.24974718

36 0.35 486.416792 378.41798 377.300932 377.083252 0.2176802

37 0.36 502.641302 432.268678 480.945223 480.711932 0.23329059

38 0.37 519.043542 370.897127 434.628874 434.4232 0.20567478

39 0.38 535.464411 378.38304 387.944753 387.731857 0.21289561

40 0.39 551.901149 1525.18105 482.0368 481.832468 0.20433145

41 0.4 551.05205 447.450138 513.811441 513.608769 0.20267118

42 0.41 567.867807 577.265804 718.206962 718.040012 0.16694964

43 0.42 583.671643 466.465543 1449.61185 471.216039 978.395807

44 0.43 601.460814 511.454524 423.453932 423.290384 0.16354833

45 0.44 616.960338 526.373081 861.053963 860.892274 0.1616899

46 0.45 632.862987 453.33448 440.127613 439.963193 0.16442002

47 0.46 649.321603 579.703144 603.022272 602.890992 0.13127946

48 0.47 665.462173 523.647565 444.938117 444.807347 0.13076982

49 0.48 681.71844 516.707091 466.333485 466.203943 0.12954161

50 0.49 698.295527 596.825245 499.531327 499.387975 0.14335268

51 0.5 714.421803 672.472822 1990.69745 550.634187 1440.06327

52 0.51 730.523623 666.800349 526.061581 525.88717 0.17441089

53 0.52 746.671179 650.19614 499.44419 499.271408 0.17278195

54 0.53 763.679011 631.141155 527.598301 527.417968 0.18033269

55 0.54 779.504461 639.113324 516.562708 516.384582 0.17812535

56 0.55 811.845329 668.39522 559.53003 559.334376 0.19565383

57 0.56 829.125798 772.851462 559.496135 559.342325 0.15381002

58 0.57 828.769281 687.077747 1013.74187 1013.53261 0.20925448

59 0.58 861.384094 737.572364 590.611248 590.458092 0.1531555

60 0.59 861.212956 810.945127 620.11411 619.962731 0.15137847

61 0.6 877.17643 891.19875 592.615274 592.464116 0.15115846

62 0.61 909.75417 867.110937 645.421834 645.253242 0.16859213

63 0.62 926.102562 2361.5583 629.605039 629.440011 0.1650279

64 0.63 942.408049 696.097493 775.313254 775.189501 0.12375317

65 0.64 959.004398 809.967593 671.726765 671.603573 0.12319131

66 0.65 975.001499 891.861586 647.663942 647.541748 0.12219374

67 0.66 990.571638 773.315981 671.578506 671.449334 0.12917176

68 0.67 1023.73253 816.012643 663.737601 663.617556 0.12004525

69 0.68 1043.87691 805.586001 689.910574 689.733768 0.17680623

70 0.69 1042.94808 958.712349 691.596999 691.438196 0.15880299

71 0.7 1059.51885 902.088967 752.435152 752.273029 0.16212311

72 0.71 1075.59013 913.192566 721.729608 721.588763 0.14084434

73 0.72 1091.80365 1030.13149 749.900178 749.757052 0.14312599

74 0.73 1115.87465 912.20779 733.327808 733.186336 0.14147198

75 0.74 1132.07353 874.723476 1106.25835 1106.10385 0.15449384

76 0.75 1149.41514 1101.86086 830.993167 830.839972 0.15319518

77 0.76 1165.79616 1022.52733 827.0898 826.936875 0.15292487

78 0.77 1184.66423 933.079242 790.189839 790.013608 0.17623155

79 0.78 1216.81062 1006.3839 828.502272 828.351108 0.15116434

80 0.79 1233.84704 1122.12011 843.000017 842.85155 0.14846711

81 0.8 1275.77472 983.510579 1290.3078 1290.18753 0.12027813

82 0.81 1292.22211 2007.29612 868.127763 868.01559 0.11217249

83 0.82 1292.25301 1096.69367 912.892664 912.780577 0.11208648

84 0.83 1308.49519 1094.37562 1971.67496 1971.56566 0.10929752

85 0.84 1327.50006 991.814556 3734.76392 1156.92905 2577.83487

86 0.85 1344.33259 1141.17887 1093.36864 1093.26071 0.10793524

87 0.86 1359.67532 1281.65473 923.389383 923.281621 0.10776141

88 0.87 1383.79948 1060.51866 926.558689 926.449351 0.1093382

89 0.88 1400.8076 1104.14632 1150.5913 1150.44797 0.14332773

90 0.89 1436.1899 1412.35008 880.179657 880.037674 0.14198213

91 0.9 1451.95177 1211.94146 1117.212 1117.09413 0.11787471

92 0.91 1468.17523 1164.88606 1110.9305 1110.81337 0.11712903

93 0.92 1499.92857 2218.01905 909.900262 909.784232 0.11602997

94 0.93 1515.47218 1225.7857 1154.01528 1153.89149 0.12378035

95 0.94 1520.02696 1257.79284 1070.20913 1070.09441 0.11471978

96 0.95 1536.35798 1409.43043 2168.34197 2168.19735 0.14461845

97 0.96 1560.72163 1375.79459 1019.59617 1019.46082 0.13534981

98 0.97 1576.39593 1254.86446 954.649584 954.514449 0.13513552

99 0.98 1595.02585 1421.0699 1041.57877 1041.44487 0.13390259

100 0.99 1611.3197 1216.00492 1568.34095 1568.21826 0.12269605

101 1.0 1629.19601 1741.20627 1126.19457 1126.05121 0.14336681

76421.0993 71509.3329 64713.77 59286.3404 5427.4296

76421.0993 71509.3329 59286.3404

5427.4296

0

20000

40000

60000

80000

No Partitioning Full Vertical Partitioning AutoStore

5427.43

59286.34

71509.333
76421.099

Execution Time Analysis Time

0

1000

2000

3000

4000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Row Store Column Store AutoStore

C
u
m

u
la

ti
v
e
 W

o
rk

lo
a
d

E

x
e
c
u
ti
o

n
 T

im
e
 (
s
e
c
)

(a) TPC-H Lineitem

1 0.0 0.14299425 0.18563265 0.08579017 0.01476472 0.07102545

2 0.01 0.65384974 1.88177913 0.49914694 0.46391645 0.03523048

3 0.02 1.55293007 1.07265949 0.95661992 0.91879942 0.0378205

4 0.03 1.41009338 1.34032246 1.32608623 1.28715259 0.03893364

5 0.04 1.8755364 1.78953031 1.78196549 1.73507633 0.04688917

6 0.05 2.27131462 2.00439274 2.00901835 1.96125416 0.04776419

7 0.06 2.72960545 2.43434785 2.45527408 2.41005362 0.04522045

8 0.07 3.15494601 2.80189697 2.83319719 2.78804841 0.04514878

9 0.08 3.58119962 3.2487625 3.26817279 3.22501655 0.04315625

10 0.09 4.03907473 3.25050303 3.28079417 3.23572795 0.04506622

11 0.1 4.46470746 3.70472823 3.73259697 3.69255784 0.04003913

12 0.11 4.90006131 4.15053121 4.17163433 4.13462032 0.03701401

13 0.12 5.37773213 4.52332799 10.7015411 3.34825873 7.35328242

14 0.13 5.95060537 4.96326221 3.66607705 3.630968 0.03510905

15 0.14 6.24926734 5.23473383 3.82367658 3.78909624 0.03458034

16 0.15 6.71163571 5.69673976 4.34671884 4.31225977 0.03445907

17 0.16 7.0689165 6.14665541 4.40796628 4.37382952 0.03413677

18 0.17 7.50461286 6.51624684 4.67461471 4.64119158 0.03342313

19 0.18 16.3487562 6.92499296 4.98999189 4.95622264 0.03376925

20 0.19 17.2345339 7.36944367 5.32356001 5.28983503 0.03372499

21 0.2 8.94942459 7.06758498 5.15259386 5.11746707 0.03512679

22 0.21 9.46963487 7.52281612 5.42966935 5.3946352 0.03503416

23 0.22 9.92133889 7.95891864 5.79252825 5.7588444 0.03368385

24 0.23 20.9540401 8.48515322 6.07546008 6.04229065 0.03316943

25 0.24 10.6861283 8.88902456 6.34302663 6.30990206 0.03312457

26 0.25 11.0881876 9.27405903 6.70611324 6.67298515 0.03312809

27 0.26 11.5351425 9.72957939 7.03271489 6.99967457 0.03304032

28 0.27 12.0555737 10.1829118 7.41283905 7.37966336 0.03317569

29 0.28 12.389702 10.4088297 7.47481797 7.4419436 0.03287438

30 0.29 12.7769639 11.0997505 8.03828334 8.00517798 0.03310536

31 0.3 13.2678453 11.3425489 8.10441326 8.07129336 0.0331199

32 0.31 13.7064409 11.7837545 8.45955892 8.42657768 0.03298124

33 0.32 14.0801726 12.2408024 8.74440664 8.71155237 0.03285427

34 0.33 14.424025 12.6372922 9.01824704 8.98543256 0.03281448

35 0.34 21.9992555 13.60909 9.65982018 9.62691042 0.03290976

36 0.35 15.3289147 13.6341023 9.65527697 9.62262733 0.03264964

37 0.36 15.9063685 14.1049979 10.0110563 9.97840688 0.03264945

38 0.37 28.6242788 14.5014582 10.3286456 10.2961362 0.03250945

39 0.38 16.4956417 14.9099211 10.6680714 10.6355804 0.03249094

40 0.39 17.0240402 15.3560486 10.9447498 10.912389 0.03236078

41 0.4 17.4523908 15.3588472 10.9983235 10.9658852 0.03243836

42 0.41 17.8017134 15.8260728 11.3898033 11.3574153 0.03238806

43 0.42 18.3064951 16.2937979 11.6011473 11.5689324 0.0322149

44 0.43 18.6489731 16.8263566 11.9324701 11.9002327 0.03223741

45 0.44 19.1286394 17.2248683 12.2431206 12.2109865 0.03213409

46 0.45 19.5484512 17.7154588 12.5597722 12.5277534 0.03201877

47 0.46 19.8985019 18.1178708 22.8161609 10.6211707 12.1949902

48 0.47 20.5176337 18.5337908 10.6353919 10.6030623 0.03232955

49 0.48 20.9529758 19.0041909 10.991987 10.9598077 0.03217933

50 0.49 21.2365544 19.5202011 11.1363324 11.1042903 0.03204209

51 0.5 21.7540659 19.8408845 25.1258843 25.0940971 0.03178715

52 0.51 22.1029181 20.2952033 11.7845831 11.7533764 0.03120672

53 0.52 22.8380872 20.6891446 12.0452087 12.0140916 0.0311171

54 0.53 23.1280791 21.1266007 12.373853 12.3425252 0.0313278

55 0.54 23.5358812 21.5344133 12.6099673 12.5785736 0.03139364

56 0.55 24.5114305 22.4126029 13.0757215 13.044521 0.03120045

57 0.56 24.7085196 22.8749762 13.2519381 13.2209933 0.03094478

58 0.57 24.8871707 22.846386 13.6299042 13.5991124 0.03079188

59 0.58 25.144083 23.7604159 13.6648768 13.6341573 0.03071951

60 0.59 25.5742981 23.7361038 13.7303396 13.6969575 0.03338207

61 0.6 26.1432544 24.1926357 14.2306125 14.2001055 0.03050701

62 0.61 26.5277378 25.0972421 14.7392998 14.7087543 0.03054552

63 0.62 27.1557813 25.6092515 14.7970762 14.7665405 0.03053563

64 0.63 27.2905016 26.15225 15.1469809 15.1165208 0.03046012

65 0.64 27.4784147 26.5053357 15.4273427 15.3971698 0.03017287

66 0.65 28.0301931 26.8532622 15.551207 15.5211154 0.03009158

67 0.66 28.6468825 27.2904274 15.8709898 15.8409838 0.03000602

68 0.67 29.1140652 28.2180997 16.37282 16.3428578 0.02996222

69 0.68 29.9045022 28.7737809 17.0560061 17.0260375 0.02996863

70 0.69 29.7117076 28.7115433 16.7306322 16.7006391 0.0299931

71 0.7 30.2677646 29.183354 16.9423611 16.9123288 0.03003228

72 0.71 30.6538176 29.5913083 17.421949 17.3919872 0.02996179

73 0.72 31.1632534 30.2515412 17.4720794 17.4421535 0.02992588

74 0.73 31.4003743 30.7904335 17.877552 17.8478885 0.02966345

75 0.74 31.8709631 31.3296412 18.108294 18.0787197 0.02957434

76 0.75 32.4078917 31.5565288 18.373188 18.3435337 0.02965433

77 0.76 32.8911444 32.0197712 18.8049538 18.775291 0.02966274

78 0.77 59.6264637 32.5236296 19.4298458 19.3972233 0.03262248

79 0.78 34.038529 33.4517967 35.9140041 35.8837997 0.03020446

80 0.79 34.3612241 33.9181294 19.9135905 19.8834088 0.03018172

81 0.8 34.8568562 35.2723695 20.6523706 20.6222421 0.03012847

82 0.81 35.1694551 35.6047015 20.8164654 20.7865132 0.02995218

83 0.82 35.1973231 35.5574728 20.8694517 20.8395558 0.02989596

84 0.83 35.528124 36.0926632 20.7503586 20.7207674 0.02959119

85 0.84 35.6764105 36.7524831 21.1065342 21.07722 0.0293142

86 0.85 36.1279438 37.1101415 21.3285131 21.2993582 0.02915499

87 0.86 36.4219236 37.5440603 22.0015089 21.972146 0.02936294

88 0.87 37.1016636 38.3381538 22.0224997 21.9931492 0.0293505

89 0.88 37.7449592 38.5151473 31.4824326 31.4529995 0.02943312

90 0.89 38.5421566 39.719135 23.2261256 23.1966345 0.02949106

91 0.9 38.9464567 40.0210613 23.2341279 23.2048567 0.02927117

92 0.91 39.2736866 40.3522388 23.2209338 23.1917275 0.02920638

93 0.92 39.7045969 41.3076421 24.038634 24.0094999 0.02913416

94 0.93 39.8979429 41.8120399 24.1991547 24.1686549 0.03049979

95 0.94 40.1114009 41.9360683 24.1676096 24.1375799 0.03002974

96 0.95 40.3617538 42.2852354 24.5404132 24.5102179 0.03019531

97 0.96 40.9233991 42.934158 24.6721095 24.6420858 0.03002378

98 0.97 41.5189301 43.3691524 25.0086131 24.9784935 0.03011963

99 0.98 41.8130985 43.9330424 25.5707971 25.5407268 0.03007035

100 0.99 68.3401574 44.6178061 25.6110419 25.5781685 0.03287338

101 1.0 42.6349268 44.835039 26.0137141 25.9838255 0.02988858

2290.15999 2113.44709 1347.69772 1324.87956 22.8181526

2290.15999 2113.44709 1324.87956

22.8181526

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Row Store Column Store Auto Store

0

750

1500

2250

3000

No Partitioning Full Vertical Partitioning AutoStore

22.818

1324.88

2113.447
2290.16

Execution Time Analysis Time

C
u

m
u

la
ti
v
e
 W

o
rk

lo
a
d

E

x
e
c
u

ti
o

n
 T

im
e
 (
s
e
c
)

(b) TPC-H Customer

Fig. 5. Total running time of varying OLTP-OLAP workload on di�erent tables in
BerkeleyDB.

limitation led us to consider BerkeleyDB (Java Edition), which is quite flexible
in terms of physical data organization, for prototyping.

In BerkeleyDB we store a key-value pair for each tuple. The key is composed
of the partition ID and the tuple ID, and the value contains all attribute values
in that partition. Since BerkeleyDB sorts the data on keys by default, we sim-
ple need to change the partition ID to change the partitioning scheme. Again,
we vary the OLTP/OLAP read access patterns as in Section 5.1, with a step
size of 0.01% over TPC-H dataset (total size 1GB). For di�erent layouts, Fig-
ure 5(a) shows the total query execution times over TPC-H Lineitem table and
Figure 5(b) shows the total query execution times over TPC-H Customer table.
In general, AutoStore outperforms the best layout in each of the tables. For
instance, even though AutoStore starts from a no-partitioning configuration,
it improves over Full Vertical Partitioning by 36% in Customer table.

6 Related Work

O�ine Horizontal and Vertical Partitioning. Horizontal partitioning is
typically done based on values (range, hash, or list). A recent work proposed
workload-based horizontal partitioning [12]. However, it is still o⇤ine. Vertical
partitioning started with early approaches of heuristic based partitioning [16]
of data files. The state-of-the-art work in vertical partitioning [23] develops the
notion of attributes a⇥nity, quantifying attribute co-occurrence in a given set of
transactions. This work creates a clustered attribute a⇥nity matrix in the first
step and applies binary partitioning repetitively in the second step. A follow-
up work [24] presents graphical algorithms to improve the complexity of their
approach. Other works took the type of scan into account to analyze the disk
accesses [10] and formulated an integer linear programming problem to arrive
at the optimal partitioning for relational databases [10]. Next, researchers pro-
posed transaction based vertical partitioning [9], arguing that since transactions
have more semantic meaning than attributes, it makes more sense to partition
attributes according to a set of transactions. However, all of these works con-
sidered data partitioning as a one-time o�ine process, in contrast to the online
approach to data partitioning in AutoStore. Recent works integrate parti-

Thursday, September 1, 2011

So Whats the Point Again?

• Workloads infrequently change
over time

26

• DBAs always available

• Physical design once-in-a-while
process

• DBAs make perfect decisions

Thursday, September 1, 2011

Summary

27

Motivation: Online Physical Database Design

5

BI Applications

Database

Sub-Problem Proposed Solution

Indexing
Online Indexing
Database Cracking
Adaptive Indexing

Materialized Views Dynamic Materialized Views

Partitioning WE!

Partitioning Problem: What to Analyze?

10

• Partitioning unit e.g. a1, a2, a3, a4, a5, a6

• Split line, Split vector e.g. [01001]

• Partition e.g. (a1, a2)

• Partitioning scheme e.g. (a1, a2), (a3, a4), (a5, a6)

• Problem statement
Find , such that:

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

Online Database Partitioning 5

Definition 2. A partitioning unit ordering � defines an order on the partitioning
units in Pu.

Partitioning units could be attributes along the vertical axis or tuples along the
horizontal axis. However, partitioning at the tuple level may not make sense
due to large number of partitioning units and hence high complexity. There-
fore, we usually consider sets of tuples, based on some key, as partitioning units
(horizontal partitioning). Similarly, we could also consider groups of columns
as partitioning units (vertical partitioning). Below, we introduce some new con-
cepts needed for our one-dimensional partitioning problem statement. First, we
express partitioning as a logical partitioning, to be able to use it in an algorithm.

Definition 3. A split vector S is a row vector of (n-1) split lines in ordering �,
where a split line sj is defined between partitioning units uj and uj+1 as follows:

sj =

(
1 if there is split between uj and uj+1

0 for no split .

A split vector S captures the logical partitioning over a given dataset. For in-
stance, a split vector S1=[0,0,0,1,0,1,1] corresponds to a partitioning of u1, u2, u3,
u4|u5, u6|u7|u8. However, in order to estimate costs using a cost-based query op-
timizer, a split vector still needs to be translated in terms of partitioning units:

Definition 4. A partition pm,r(S,�) is a maximal chunk of adjacent partitioning
units from um to ur, such that split lines sm to sr�1 are all 0.

Definition 5. A partitioning scheme P (S,�) over relation R is a set of disjoint
and complete partitions, i.e.

⇧
x

pmx,rx (S,�) = R,

pmx,rx (S,�) ⌃ pmy,ry (S,�) = �, ⌅x, y such that x ⇤= y.

Partitioning scheme expresses the actual arrangement of partitioning units,
given a split vector. For instance, for split vector S1, partition p1,4(S1,�) is
{u1, u2, u3, u4} and partitioning scheme P (S1,�)={p1,4(S1,�),p5,6(S1,�), p7(S1,
�), p8(S1,�)}. Finally, in order to evaluate partitioning schemes in an online set-
ting, we need to model the online query workload.

Definition 6. An Online Workload Wtk is a stream of queries {q0, ..., qtk�1 , qtk}
seen till time tk, where tk > tk�1 > ... > 0.

Further, let Cest.(Wtk , P (S,�)) denote the execution cost of workload Wtk as
estimated by a cost-based optimizer. Now, we express our one-dimensional par-
titioning problem as follows.

One-dimensional Online Partitioning Problem. Given an online workload
Wtk and partitioning unit ordering �, find the split vector S⇥ that minimizes the
estimated workload execution cost, i.e.

S⇥ = argmin
S

Cest.

�
Wtk , P (S,�)

⇥
. (1)

Online Database Partitioning 5

Definition 2. A partitioning unit ordering � defines an order on the partitioning
units in Pu.

Partitioning units could be attributes along the vertical axis or tuples along the
horizontal axis. However, partitioning at the tuple level may not make sense
due to large number of partitioning units and hence high complexity. There-
fore, we usually consider sets of tuples, based on some key, as partitioning units
(horizontal partitioning). Similarly, we could also consider groups of columns
as partitioning units (vertical partitioning). Below, we introduce some new con-
cepts needed for our one-dimensional partitioning problem statement. First, we
express partitioning as a logical partitioning, to be able to use it in an algorithm.

Definition 3. A split vector S is a row vector of (n-1) split lines in ordering �,
where a split line sj is defined between partitioning units uj and uj+1 as follows:

sj =

(
1 if there is split between uj and uj+1

0 for no split .

A split vector S captures the logical partitioning over a given dataset. For in-
stance, a split vector S1=[0,0,0,1,0,1,1] corresponds to a partitioning of u1, u2, u3,
u4|u5, u6|u7|u8. However, in order to estimate costs using a cost-based query op-
timizer, a split vector still needs to be translated in terms of partitioning units:

Definition 4. A partition pm,r(S,�) is a maximal chunk of adjacent partitioning
units from um to ur, such that split lines sm to sr�1 are all 0.

Definition 5. A partitioning scheme P (S,�) over relation R is a set of disjoint
and complete partitions, i.e.

⇧
x

pmx,rx (S,�) = R,

pmx,rx (S,�) ⌃ pmy,ry (S,�) = �, ⌅x, y such that x ⇤= y.

Partitioning scheme expresses the actual arrangement of partitioning units,
given a split vector. For instance, for split vector S1, partition p1,4(S1,�) is
{u1, u2, u3, u4} and partitioning scheme P (S1,�)={p1,4(S1,�),p5,6(S1,�), p7(S1,
�), p8(S1,�)}. Finally, in order to evaluate partitioning schemes in an online set-
ting, we need to model the online query workload.

Definition 6. An Online Workload Wtk is a stream of queries {q0, ..., qtk�1 , qtk}
seen till time tk, where tk > tk�1 > ... > 0.

Further, let Cest.(Wtk , P (S,�)) denote the execution cost of workload Wtk as
estimated by a cost-based optimizer. Now, we express our one-dimensional par-
titioning problem as follows.

One-dimensional Online Partitioning Problem. Given an online workload
Wtk and partitioning unit ordering �, find the split vector S⇥ that minimizes the
estimated workload execution cost, i.e.

S⇥ = argmin
S

Cest.

�
Wtk , P (S,�)

⇥
. (1)

Online Database Partitioning 5

Definition 2. A partitioning unit ordering � defines an order on the partitioning
units in Pu.

Partitioning units could be attributes along the vertical axis or tuples along the
horizontal axis. However, partitioning at the tuple level may not make sense
due to large number of partitioning units and hence high complexity. There-
fore, we usually consider sets of tuples, based on some key, as partitioning units
(horizontal partitioning). Similarly, we could also consider groups of columns
as partitioning units (vertical partitioning). Below, we introduce some new con-
cepts needed for our one-dimensional partitioning problem statement. First, we
express partitioning as a logical partitioning, to be able to use it in an algorithm.

Definition 3. A split vector S is a row vector of (n-1) split lines in ordering �,
where a split line sj is defined between partitioning units uj and uj+1 as follows:

sj =

(
1 if there is split between uj and uj+1

0 for no split .

A split vector S captures the logical partitioning over a given dataset. For in-
stance, a split vector S1=[0,0,0,1,0,1,1] corresponds to a partitioning of u1, u2, u3,
u4|u5, u6|u7|u8. However, in order to estimate costs using a cost-based query op-
timizer, a split vector still needs to be translated in terms of partitioning units:

Definition 4. A partition pm,r(S,�) is a maximal chunk of adjacent partitioning
units from um to ur, such that split lines sm to sr�1 are all 0.

Definition 5. A partitioning scheme P (S,�) over relation R is a set of disjoint
and complete partitions, i.e.

⇧
x

pmx,rx (S,�) = R,

pmx,rx (S,�) ⌃ pmy,ry (S,�) = �, ⌅x, y such that x ⇤= y.

Partitioning scheme expresses the actual arrangement of partitioning units,
given a split vector. For instance, for split vector S1, partition p1,4(S1,�) is
{u1, u2, u3, u4} and partitioning scheme P (S1,�)={p1,4(S1,�),p5,6(S1,�), p7(S1,
�), p8(S1,�)}. Finally, in order to evaluate partitioning schemes in an online set-
ting, we need to model the online query workload.

Definition 6. An Online Workload Wtk is a stream of queries {q0, ..., qtk�1 , qtk}
seen till time tk, where tk > tk�1 > ... > 0.

Further, let Cest.(Wtk , P (S,�)) denote the execution cost of workload Wtk as
estimated by a cost-based optimizer. Now, we express our one-dimensional par-
titioning problem as follows.

One-dimensional Online Partitioning Problem. Given an online workload
Wtk and partitioning unit ordering �, find the split vector S⇥ that minimizes the
estimated workload execution cost, i.e.

S⇥ = argmin
S

Cest.

�
Wtk , P (S,�)

⇥
. (1)

Online Database Partitioning 5

Definition 2. A partitioning unit ordering � defines an order on the partitioning
units in Pu.

Partitioning units could be attributes along the vertical axis or tuples along the
horizontal axis. However, partitioning at the tuple level may not make sense
due to large number of partitioning units and hence high complexity. There-
fore, we usually consider sets of tuples, based on some key, as partitioning units
(horizontal partitioning). Similarly, we could also consider groups of columns
as partitioning units (vertical partitioning). Below, we introduce some new con-
cepts needed for our one-dimensional partitioning problem statement. First, we
express partitioning as a logical partitioning, to be able to use it in an algorithm.

Definition 3. A split vector S is a row vector of (n-1) split lines in ordering �,
where a split line sj is defined between partitioning units uj and uj+1 as follows:

sj =

(
1 if there is split between uj and uj+1

0 for no split .

A split vector S captures the logical partitioning over a given dataset. For in-
stance, a split vector S1=[0,0,0,1,0,1,1] corresponds to a partitioning of u1, u2, u3,
u4|u5, u6|u7|u8. However, in order to estimate costs using a cost-based query op-
timizer, a split vector still needs to be translated in terms of partitioning units:

Definition 4. A partition pm,r(S,�) is a maximal chunk of adjacent partitioning
units from um to ur, such that split lines sm to sr�1 are all 0.

Definition 5. A partitioning scheme P (S,�) over relation R is a set of disjoint
and complete partitions, i.e.

⇧
x

pmx,rx (S,�) = R,

pmx,rx (S,�) ⌃ pmy,ry (S,�) = �, ⌅x, y such that x ⇤= y.

Partitioning scheme expresses the actual arrangement of partitioning units,
given a split vector. For instance, for split vector S1, partition p1,4(S1,�) is
{u1, u2, u3, u4} and partitioning scheme P (S1,�)={p1,4(S1,�),p5,6(S1,�), p7(S1,
�), p8(S1,�)}. Finally, in order to evaluate partitioning schemes in an online set-
ting, we need to model the online query workload.

Definition 6. An Online Workload Wtk is a stream of queries {q0, ..., qtk�1 , qtk}
seen till time tk, where tk > tk�1 > ... > 0.

Further, let Cest.(Wtk , P (S,�)) denote the execution cost of workload Wtk as
estimated by a cost-based optimizer. Now, we express our one-dimensional par-
titioning problem as follows.

One-dimensional Online Partitioning Problem. Given an online workload
Wtk and partitioning unit ordering �, find the split vector S⇥ that minimizes the
estimated workload execution cost, i.e.

S⇥ = argmin
S

Cest.

�
Wtk , P (S,�)

⇥
. (1)

Online Database Partitioning 5

Definition 2. A partitioning unit ordering � defines an order on the partitioning
units in Pu.

Partitioning units could be attributes along the vertical axis or tuples along the
horizontal axis. However, partitioning at the tuple level may not make sense
due to large number of partitioning units and hence high complexity. There-
fore, we usually consider sets of tuples, based on some key, as partitioning units
(horizontal partitioning). Similarly, we could also consider groups of columns
as partitioning units (vertical partitioning). Below, we introduce some new con-
cepts needed for our one-dimensional partitioning problem statement. First, we
express partitioning as a logical partitioning, to be able to use it in an algorithm.

Definition 3. A split vector S is a row vector of (n-1) split lines in ordering �,
where a split line sj is defined between partitioning units uj and uj+1 as follows:

sj =

(
1 if there is split between uj and uj+1

0 for no split .

A split vector S captures the logical partitioning over a given dataset. For in-
stance, a split vector S1=[0,0,0,1,0,1,1] corresponds to a partitioning of u1, u2, u3,
u4|u5, u6|u7|u8. However, in order to estimate costs using a cost-based query op-
timizer, a split vector still needs to be translated in terms of partitioning units:

Definition 4. A partition pm,r(S,�) is a maximal chunk of adjacent partitioning
units from um to ur, such that split lines sm to sr�1 are all 0.

Definition 5. A partitioning scheme P (S,�) over relation R is a set of disjoint
and complete partitions, i.e.

⇧
x

pmx,rx (S,�) = R,

pmx,rx (S,�) ⌃ pmy,ry (S,�) = �, ⌅x, y such that x ⇤= y.

Partitioning scheme expresses the actual arrangement of partitioning units,
given a split vector. For instance, for split vector S1, partition p1,4(S1,�) is
{u1, u2, u3, u4} and partitioning scheme P (S1,�)={p1,4(S1,�),p5,6(S1,�), p7(S1,
�), p8(S1,�)}. Finally, in order to evaluate partitioning schemes in an online set-
ting, we need to model the online query workload.

Definition 6. An Online Workload Wtk is a stream of queries {q0, ..., qtk�1 , qtk}
seen till time tk, where tk > tk�1 > ... > 0.

Further, let Cest.(Wtk , P (S,�)) denote the execution cost of workload Wtk as
estimated by a cost-based optimizer. Now, we express our one-dimensional par-
titioning problem as follows.

One-dimensional Online Partitioning Problem. Given an online workload
Wtk and partitioning unit ordering �, find the split vector S⇥ that minimizes the
estimated workload execution cost, i.e.

S⇥ = argmin
S

Cest.

�
Wtk , P (S,�)

⇥
. (1)

• Workload

• ordering e.g. a3 a2 a1 a5 a4 a6

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

Online Database Partitioning 5

Definition 2. A partitioning unit ordering � defines an order on the partitioning
units in Pu.

Partitioning units could be attributes along the vertical axis or tuples along the
horizontal axis. However, partitioning at the tuple level may not make sense
due to large number of partitioning units and hence high complexity. There-
fore, we usually consider sets of tuples, based on some key, as partitioning units
(horizontal partitioning). Similarly, we could also consider groups of columns
as partitioning units (vertical partitioning). Below, we introduce some new con-
cepts needed for our one-dimensional partitioning problem statement. First, we
express partitioning as a logical partitioning, to be able to use it in an algorithm.

Definition 3. A split vector S is a row vector of (n-1) split lines in ordering �,
where a split line sj is defined between partitioning units uj and uj+1 as follows:

sj =

(
1 if there is split between uj and uj+1

0 for no split .

A split vector S captures the logical partitioning over a given dataset. For in-
stance, a split vector S1=[0,0,0,1,0,1,1] corresponds to a partitioning of u1, u2, u3,
u4|u5, u6|u7|u8. However, in order to estimate costs using a cost-based query op-
timizer, a split vector still needs to be translated in terms of partitioning units:

Definition 4. A partition pm,r(S,�) is a maximal chunk of adjacent partitioning
units from um to ur, such that split lines sm to sr�1 are all 0.

Definition 5. A partitioning scheme P (S,�) over relation R is a set of disjoint
and complete partitions, i.e.

⇧
x

pmx,rx (S,�) = R,

pmx,rx (S,�) ⌃ pmy,ry (S,�) = �, ⌅x, y such that x ⇤= y.

Partitioning scheme expresses the actual arrangement of partitioning units,
given a split vector. For instance, for split vector S1, partition p1,4(S1,�) is
{u1, u2, u3, u4} and partitioning scheme P (S1,�)={p1,4(S1,�),p5,6(S1,�), p7(S1,
�), p8(S1,�)}. Finally, in order to evaluate partitioning schemes in an online set-
ting, we need to model the online query workload.

Definition 6. An Online Workload Wtk is a stream of queries {q0, ..., qtk�1 , qtk}
seen till time tk, where tk > tk�1 > ... > 0.

Further, let Cest.(Wtk , P (S,�)) denote the execution cost of workload Wtk as
estimated by a cost-based optimizer. Now, we express our one-dimensional par-
titioning problem as follows.

One-dimensional Online Partitioning Problem. Given an online workload
Wtk and partitioning unit ordering �, find the split vector S⇥ that minimizes the
estimated workload execution cost, i.e.

S⇥ = argmin
S

Cest.

�
Wtk , P (S,�)

⇥
. (1)

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

Online Partitioning Unit Ordering

• Update only the referenced in affinity matrix

13

• Re-cluster only the referenced in affinity matrix

SuppKey PartKey Quantity

SuppKey 6 9 6

PartKey 4 6 9

Quantity 9 6 4

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

PartKey Quantity SuppKey

PartKey 9 6 6

Quantity 6 9 4

SuppKey 6 4 9

0
+48

PartKey Quantity SuppKey

PartKey 9 6 6

Quantity 6 9 4

SuppKey 6 4 9

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

4 Alekh Jindal and Jens Dittrich

similarity [18, 23, 10, 24, 11]. The core idea of a⇥nity based partitioning is to
compute a⇥nities between every pair of attributes and then to cluster them
such that high a⇥nity pairs are as close in neighborhood as possible. To com-
pute a⇥nity between di�erent attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query q references attribute a.
U(q, a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1,PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the a⇥nity between
two attributes ai and aj , the a�nity function A(ai, aj) simply counts their co-
occurrences in the query workload, i.e. A(ai, aj) =

�
q U(q, ai) · U(q, aj). For

instance, in Lineitem table, A(PartKey,SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The a⇥nity function produces a 2D a⇥n-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar a⇥nity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (⇥). For example, consider the following a⇥nity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

PartKey SuppKey Quantity

PartKey 8 5 6

SuppKey 5 8 4

Quantity 6 4 9

PartKey Quantity SuppKey

PartKey 8 6 5

Quantity 6 9 4

SuppKey 5 4 8

The left matrix rep-
resents an attribute
ordering PartKey ⇥
SuppKey ⇥ Quantity,
whereas the right matrix represents ordering PartKey⇥Quantity⇥SuppKey.
Given attribute ordering ⇥, an a�nity measure M(⇥) measures the quality of
the a⇥nity clustering as M(⇥) =

�x
i=1

�x
j=1 A(ai, aj)[A(ai, aj�1)+A(ai, aj+1)].

It holds that A(a0, aj) = A(ai, a0) = A(ax+1, aj) = A(ai, ax+1)=0. For the
left matrix above M(⇥) = 404 and for the right matrix M(⇥) = 440. In-
deed, the right matrix has better clustering since a⇥nity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of a⇥nity matrix clustering problem now is to
maximize the a⇥nity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the a�nity measure at each step is max-
imized [23]. The contribution to the a⇥nity measure of a new attribute ak when
placed between two already placed attributes ai and aj is: Cont(ai, aj , ak) =
2 ·

�n
z=1[A(az, ai) ·A(az, ak)+A(az, ak) ·A(az, aj)�A(az, ai) ·A(az, aj)]. In this

clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the a⇥nity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1DPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set Pu = {u1, u2, .., un} is the set of n smallest
pieces of data.

(PartKey, SuppKey)

How to Analyze the Workload?

15

• offline approach: consider all possible split vectors
(brute force)

• online approach: One-dimensional Online
Partitioning (O2P) Algorithm

- prune non-referenced partitioning units

- consider split vectors greedily

- save previous best split vectors using dynamic programming

Step 2: Enumerating Split Vectors

How much is O2P Faster?

Setup: TPC-H Lineitem table, 10,000 queries in total

23

12 Alekh Jindal and Jens Dittrich

0.0 524288.0 524288.0

5.0 262144.0 524288.0

10.0 131072.0 524288.0

15.0 65536.0 524288.0

20.0 32768.0 524288.0

25.0 16384.0 524288.0

30.0 8192.0 524288.0

35.0 4096.0 524288.0

40.0 2048.0 524288.0

45.0 1024.0 524288.0

50.0 512.0 524288.0

55.0 256.0 524288.0

60.0 128.0 524288.0

65.0 64.0 524288.0

70.0 32.0 524288.0

75.0 16.0 524288.0

80.0 8.0 524288.0

85.0 4.0 524288.0

90.0 2.0 524288.0

95.0 1.0 524288.0

1

10

100

1000

10000

100000

1000000

0 25 50 75 100

Dead Unit Pruning Brute Force

Percentage Dead Units

It
e
ra

ti
o

n
s

65536.0 4096.0 136.0 45.0

128.0 32.0 28.0 18.0

64.0 32.0 21.0 15.0

256.0 16.0 36.0 21.0

16.0 16.0 10.0 9.0

256.0 64.0 36.0 21.0

64.0 64.0 21.0 15.0

16.0 8.0 10.0 9.0

128.0 128.0 28.0 18.0

32768.0 32768.0 120.0 42.0

8.0 4.0 6.0 6.0

4.0 2.0 3.0 3.0

1

10

100

1000

10000

100000

Part
Supplier

PartSupp
Customer

Lineitem
Nation

Region

#
 I
te

ra
ti
o

n
s

NV/HC O2Pp

O2Ppg O2Ppgd

1

10

100

1000

10000

100000

LineOrder
Customer

Supplier Part Date

#
 I
te

ra
ti
o

n
s

NV/HC O2Pp

O2Ppg O2Ppgd

(a) SSB Benchmark

0.0 524288.0 524288.0

5.0 262144.0 524288.0

10.0 131072.0 524288.0

15.0 65536.0 524288.0

20.0 32768.0 524288.0

25.0 16384.0 524288.0

30.0 8192.0 524288.0

35.0 4096.0 524288.0

40.0 2048.0 524288.0

45.0 1024.0 524288.0

50.0 512.0 524288.0

55.0 256.0 524288.0

60.0 128.0 524288.0

65.0 64.0 524288.0

70.0 32.0 524288.0

75.0 16.0 524288.0

80.0 8.0 524288.0

85.0 4.0 524288.0

90.0 2.0 524288.0

95.0 1.0 524288.0

1

10

100

1000

10000

100000

1000000

0 25 50 75 100

Dead Unit Pruning Brute Force

Percentage Dead Units

It
e
ra

ti
o

n
s

65536.0 4096.0 136.0 45.0

128.0 32.0 28.0 18.0

64.0 32.0 21.0 15.0

256.0 16.0 36.0 21.0

16.0 16.0 10.0 9.0

256.0 64.0 36.0 21.0

64.0 64.0 21.0 15.0

16.0 8.0 10.0 9.0

128.0 128.0 28.0 18.0

32768.0 32768.0 120.0 42.0

8.0 4.0 6.0 6.0

4.0 2.0 3.0 3.0

1

10

100

1000

10000

100000

Part
Supplier

PartSupp
Customer

Lineitem
Nation

Region

#
 I
te

ra
ti
o

n
s

NV/HC O2Pp

O2Ppg O2Ppgd

1

10

100

1000

10000

100000

LineOrder
Customer

Supplier Part Date

#
 I
te

ra
ti
o

n
s

NV/HC O2Pp

O2Ppg O2Ppgd

(b) TPC-H Benchmark

Fig. 1. Number of iterations in di�erent algorithms over SSB and TPC-H benchmarks
on di�erent tables.

0.0 14.934315 15.568234 0.051235 0.050968

0.1 14.36905 14.343422 0.04921 0.024269

0.2 13.686592 13.684466 0.047133 0.023718

0.3 13.123296 13.077786 0.044781 0.02208

0.4 12.454584 12.456661 0.04302 0.020945

0.5 11.81355 11.836774 0.040606 0.02047

0.6 11.228328 11.263937 0.038325 0.020726

0.7 10.622089 10.588341 0.03595 0.018501

0.8 10.087093 10.294272 0.033605 0.017506

0.9 9.369829 9.36957 0.031568 0.015831

1.0 8.765184 0.017162 0.034309 0.01534

0.001

0.01

0.1

1

10

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
n
a
ly

s
is

 T
im

e
 (
s
e
c
)

Fraction of OLAP against OLTP queries

NV/HC O2Pp O2Ppg O2pgd

0.0 0.152998 0.029416 0.005581 0.008805

0.1 0.028032 0.027724 0.007218 0.006585

0.2 0.027576 0.026814 0.005353 0.004095

0.3 0.026278 0.029252 0.006032 0.003887

0.4 0.026676 0.026983 0.005873 0.003829

0.5 0.024225 0.024119 0.004656 0.004637

0.6 0.02451 0.024038 0.005237 0.00353

0.7 0.022747 0.023346 0.005802 0.00463

0.8 0.025298 0.022041 0.005179 0.003223

0.9 0.020942 0.02066 0.004132 0.003185

1.0 0.02152 0.002624 0.004479 0.003086

0

0.001

0.01

0.1

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
n
a
ly

s
is

 T
im

e
 (
s
e
c
)

Fraction of OLAP against OLTP queries

NV/HC O2Pp O2Ppg O2Ppgd

(a) TPC-H Lineitem

0.0 14.934315 15.568234 0.051235 0.050968

0.1 14.36905 14.343422 0.04921 0.024269

0.2 13.686592 13.684466 0.047133 0.023718

0.3 13.123296 13.077786 0.044781 0.02208

0.4 12.454584 12.456661 0.04302 0.020945

0.5 11.81355 11.836774 0.040606 0.02047

0.6 11.228328 11.263937 0.038325 0.020726

0.7 10.622089 10.588341 0.03595 0.018501

0.8 10.087093 10.294272 0.033605 0.017506

0.9 9.369829 9.36957 0.031568 0.015831

1.0 8.765184 0.017162 0.034309 0.01534

0.001

0.01

0.1

1

10

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
n
a
ly

s
is

 T
im

e
 (
s
e
c
)

Fraction of OLAP against OLTP queries

NV/HC O2Pp O2Ppg O2pgd

0.0 0.152998 0.029416 0.005581 0.008805

0.1 0.028032 0.027724 0.007218 0.006585

0.2 0.027576 0.026814 0.005353 0.004095

0.3 0.026278 0.029252 0.006032 0.003887

0.4 0.026676 0.026983 0.005873 0.003829

0.5 0.024225 0.024119 0.004656 0.004637

0.6 0.02451 0.024038 0.005237 0.00353

0.7 0.022747 0.023346 0.005802 0.00463

0.8 0.025298 0.022041 0.005179 0.003223

0.9 0.020942 0.02066 0.004132 0.003185

1.0 0.02152 0.002624 0.004479 0.003086

0

0.001

0.01

0.1

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
A

n
a
ly

s
is

 T
im

e
 (
s
e
c
)

Fraction of OLAP against OLTP queries

NV/HC O2Pp O2Ppg O2Ppgd

(b) TPC-H Customer

Fig. 2. Running times of di�erent algorithms over changing workload type [100 queries
each].

1 0.306107 0.180548 0.001072 7.51E-04

10 1.114254 1.108406 0.003923 0.002868

100 10.955149 10.930104 0.036908 0.018031

1000 129.451853 130.643162 0.480241 0.223235

10000 1345.45368 1325.67648 4.471151 2.21591

1 0.014318 0.007888 0.001494 0.001608

10 0.03929 0.0229 0.003986 0.003706

100 0.065833 0.025595 0.007868 0.003707

1000 0.281479 0.268856 0.053085 0.041053

10000 3.00536 2.980087 0.62684 0.484902

0

0.01

1

100

10000

1 10 100 1000 10000

A
n
a
ly

s
is

 T
im

e
 (
s
e
c
)

Number of queries in workload

NV/HC O2Pp

O2Ppg O2Ppgd

0.001

0.01

0.1

1

10

1 10 100 1000 10000

A
n
a
ly

s
is

 T
im

e
 (
s
e
c
)

Number of queries in workload

NV/HC O2Pp

O2Ppg O2Ppgd

(a) TPC-H Lineitem

1 0.306107 0.180548 0.001072 7.51E-04

10 1.114254 1.108406 0.003923 0.002868

100 10.955149 10.930104 0.036908 0.018031

1000 129.451853 130.643162 0.480241 0.223235

10000 1345.45368 1325.67648 4.471151 2.21591

1 0.014318 0.007888 0.001494 0.001608

10 0.03929 0.0229 0.003986 0.003706

100 0.065833 0.025595 0.007868 0.003707

1000 0.281479 0.268856 0.053085 0.041053

10000 3.00536 2.980087 0.62684 0.484902

0

0.01

1

100

10000

1 10 100 1000 10000

A
n
a
ly

s
is

 T
im

e
 (
s
e
c
)

Number of queries in workload

NV/HC O2Pp

O2Ppg O2Ppgd

0.001

0.01

0.1

1

10

1 10 100 1000 10000

A
n
a
ly

s
is

 T
im

e
 (
s
e
c
)

Number of queries in workload

NV/HC O2Pp

O2Ppg O2Ppgd

(b) TPC-H Customer

Fig. 3. Running time of di�erent algorithms over varying workload size [with 50%
OLAP, 50%OLTP queries].

of OLTP and OLAP-style queries. Figures 3(a) and 3(b) show the scalability of
O2P over TPC-H Lineitem and Customer tables respectively. We can see that
all variants of O2P algorithm scale linearly with the workload size. Hence, from
now on we will only consider O2Ppgd algorithm.

Can such a System Adapt to Changing Workload ?

Setup: Universal relation de-normalized from TPC-H schema, 11
attributes, SF 1

24

Online Database Partitioning 13

Row Column AutoStore

(Dynamic)

AutoStore

(Dynamic

+Multiple

Threads)

AutoStore

(Dynamic

+Amortized)

0.0 29.5160282 18.0036407 31.5713141 30.7174521 31.0165739

0.01 29.5580543 18.121008 17.7554633 17.9971831 19.5413709

0.02 29.6602127 18.2521591 17.7946927 17.892772 17.7002679

0.03 29.7383647 18.2827567 17.9116381 17.9626927 17.7996613

0.04 29.7620162 18.4432967 17.8976242 18.0072833 17.8303774

0.05 29.8096575 18.509177 18.1783395 18.1321525 17.9721919

0.06 29.8628561 18.5588799 17.3807727 17.2456661 18.2829705

0.07 29.8110034 18.6407028 17.3879216 17.2811072 18.3357757

0.08 29.986822 18.8142683 17.4086524 17.3583007 18.4059206

0.09 29.8490574 18.6228154 17.4378938 17.2881777 18.7579874

0.1 29.9233747 18.7579598 17.5015735 17.2877976 18.7871441

0.11 30.127755 18.9109634 17.5466034 17.3928342 18.7412782

0.12 30.0972551 19.0165017 17.5335251 17.4164478 18.8875045

0.13 30.0318513 19.0242067 17.5521099 17.4411491 18.9026489

0.14 29.9435145 19.0818675 17.5033467 17.3926517 19.1287986

0.15 30.1116275 19.2562807 17.5951869 17.4716804 19.1500093

0.16 30.2205533 19.3453499 17.6248784 17.5446147 19.1712984

0.17 30.1101365 19.4222058 17.6546107 17.5688369 19.2657084

0.18 30.203371 19.5228705 17.6764776 17.5902968 19.2799007

0.19 30.361289 19.6798057 17.7950686 17.5915144 19.3339801

0.2 30.2905679 19.4882063 17.7014098 17.5964668 19.8805794

0.21 30.2442531 19.6269891 17.8087427 17.6984316 19.6425598

0.22 30.2687404 19.7099345 17.8301571 17.7080282 19.6012517

0.23 30.3962779 19.8258537 17.9315959 17.7514308 19.6478908

0.24 30.3536238 19.8919188 17.9053318 17.7517425 19.7489729

0.25 30.5980951 20.0166782 17.9574388 17.8924229 19.7934981

0.26 30.5262955 20.1309304 17.9806989 17.8978616 19.77312

0.27 30.7682444 20.2753006 18.0464528 18.0821492 19.8153177

0.28 30.6071426 20.2936028 17.9980631 17.998899 20.0582533

0.29 30.8283528 20.6294641 18.1827034 18.0466724 19.9447297

0.3 30.8090411 20.502721 18.140978 17.9715505 20.1089739

0.31 30.9495912 20.6265345 18.1923206 18.117088 20.0845561

0.32 30.9796028 20.8017265 18.2210402 18.0768144 20.1325389

0.33 31.0485869 20.7706302 18.2329343 18.0493261 20.2407681

0.34 31.0407692 21.0915937 18.3402345 18.1673789 20.2543201

0.35 31.144348 21.1378838 18.3387385 18.3020098 20.2421328

0.36 31.2471566 21.2323806 18.4261356 18.3573459 20.2955341

0.37 31.5176076 21.3677985 18.4437909 18.3515841 20.2826855

0.38 31.5170748 21.3877596 18.5120532 18.4211824 20.2925852

0.39 31.6247491 21.5688391 18.5688994 18.398908 20.3043926

0.4 31.4080286 21.4077299 18.5219744 18.4614336 20.7472513

0.41 31.5095417 21.5865456 18.5394361 18.3624086 20.7686208

0.42 31.5623496 21.6698007 18.623534 18.4813856 20.7958855

0.43 31.5589495 21.8024645 18.6695073 18.6262265 20.8028121

0.44 31.6551088 22.0302349 18.7158376 18.6821995 20.7985295

0.45 31.7942519 22.1902497 18.7971196 18.5761983 20.8144244

0.46 32.0484596 22.2068321 18.840386 18.748263 20.8253964

0.47 32.1196752 22.3955855 18.9015756 18.7929432 20.8562001

0.48 32.0854577 22.4513708 18.9286457 18.8078146 20.9058339

0.49 32.2540297 22.6500485 19.009396 18.9081364 20.9137154

0.5 32.3452154 22.8078607 19.0543344 18.9997602 20.8577675

0.51 32.1984135 22.8657698 19.1303246 19.1083354 20.9697276

0.52 32.350701 22.9153727 19.1313279 19.0370209 20.9223788

0.53 32.5435492 23.0583818 19.2325062 19.1032123 20.9101434

0.54 32.6735576 23.3362446 19.2516426 19.217038 20.940475

0.55 32.552396 23.4563349 19.3232651 19.1768832 21.0115672

0.56 32.6238177 23.6287475 19.3999717 19.2444434 21.0281839

0.57 32.6343446 23.6672928 19.4144155 19.2367032 21.0308333

0.58 32.9622293 24.1382793 19.5439991 19.5294892 20.821399

0.59 32.7511433 23.8559734 19.5492387 19.4629768 21.084037

0.6 32.9264316 24.089838 19.5876447 19.5320518 21.0917905

0.61 33.0698501 24.4292789 19.7243929 19.6553107 20.6758448

0.62 33.168009 24.4680939 19.82667 19.6547532 20.7431475

0.63 33.2224517 24.5151767 19.8068379 19.7366984 20.7323905

0.64 33.4357509 24.7341065 19.8783663 19.6845933 20.7522505

0.65 33.3930646 24.8372442 19.917921 19.7695783 20.8400873

0.66 33.5303465 24.9632981 20.0047086 19.9045067 20.7835932

0.67 33.6923757 25.3076689 20.063782 19.7589208 20.833773

0.68 33.8358905 25.5539383 20.1410967 20.202543 20.7731845

0.69 33.8346817 25.4036351 20.1673612 20.2088703 20.7626379

0.7 33.9215381 25.6175114 20.259521 20.2259538 20.801992

0.71 34.0084622 25.6442176 20.2815966 20.1349589 20.8182536

0.72 34.0708078 25.8614359 20.3039862 20.0260351 20.786768

0.73 34.2934619 26.0934413 20.4468093 20.2851182 20.6454147

0.74 34.3471748 26.1951862 20.559109 20.2998662 20.6412978

0.75 34.5098715 26.2744047 20.5391418 20.6661956 20.6169417

0.76 34.5671412 26.4468068 20.6412289 20.3847329 20.7182808

0.77 34.6278474 26.6301248 20.683684 20.501638 20.576863

0.78 34.8581334 26.862893 20.7866559 20.5345568 20.6176143

0.79 34.8954254 26.9453207 20.8180914 20.6762437 20.3639128

0.8 35.2385642 27.5792862 20.9749488 20.8158613 20.124524

0.81 35.3803901 27.58027 21.0455807 20.6797617 20.1734712

0.82 35.2973231 27.5664835 21.1078359 20.6847115 20.1554215

0.83 35.3575967 27.7699208 21.0634655 20.9795234 20.1734592

0.84 35.5383962 27.9250531 21.2429039 20.9881555 20.0975674

0.85 35.6503862 28.1381095 21.2652928 21.0785681 20.1237122

0.86 35.6316854 28.1840755 21.412775 21.0817759 20.1440614

0.87 35.871253 28.3100044 21.4163551 21.2822089 19.9139578

0.88 35.9904642 28.5329124 21.4780159 21.3634358 19.9330221

0.89 36.1787784 28.8745663 21.6697932 21.4029945 19.8994188

0.9 36.2934756 28.9925247 21.6699028 21.4882946 19.891663

0.91 36.3481673 29.0280793 21.7511504 21.3909959 19.7241633

0.92 36.6693442 29.4854091 21.9296451 21.4745103 19.5589572

0.93 36.6826939 29.5850697 21.9501976 21.5812988 19.5827711

0.94 36.7598693 29.6991971 22.0243165 21.6223046 19.4704749

0.95 36.8280572 29.8223523 22.0006098 21.9065619 19.5123962

0.96 37.0276031 30.078906 22.1966999 21.8613453 19.2839319

0.97 37.1074597 30.1981601 22.2346602 19.1497048 19.2890373

0.98 37.2318557 30.3985654 22.3079142 19.8883805 19.2280625

0.99 37.3510697 30.5521908 22.3968707 19.8126922 19.2439965

1.0 37.3986861 30.6678561 22.4038221 20.0005802 19.2738097

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
o

rk
lo

a
d

 E
x
e
c
u

ti
o

n
 T

im
e
 (
s
e
c
)

Fraction of OLAP against OLTP queries

No Partitioning Full Vertical Partitioning
AutoStore (O2Ppgd) AutoStore (O2Ppgdm)
AutoStore (O2Ppgda)

(a) Comparing di�erent methods

Row Store Column Store Auto Store

(100-500)

Auto Store

(200-1000)

Auto Store

(300-1500)

Auto Store

(400-2000)

0.0 29.5160282 18.0036407 31.0165739 39.2146286 31.2420529 31.04643

0.01 29.5580543 18.121008 19.5413709 39.3341313 31.2249557 31.1190141

0.02 29.6602127 18.2521591 17.7002679 19.9429901 31.2295562 31.1279538

0.03 29.7383647 18.2827567 17.7996613 16.9315949 18.8936382 31.1040129

0.04 29.7620162 18.4432967 17.8303774 16.9177847 16.9154286 19.9821079

0.05 29.8096575 18.509177 17.9721919 18.2379123 17.2886596 18.0809679

0.06 29.8628561 18.5588799 18.2829705 18.2611734 17.3319564 18.1359707

0.07 29.8110034 18.6407028 18.3357757 18.3391796 17.5271102 18.2460554

0.08 29.986822 18.8142683 18.4059206 18.343532 18.690256 18.327557

0.09 29.8490574 18.6228154 18.7579874 18.733596 19.1411158 18.2216

0.1 29.9233747 18.7579598 18.7871441 18.7058578 19.1255401 18.3074043

0.11 30.127755 18.9109634 18.7412782 18.7421484 19.181012 18.3303041

0.12 30.0972551 19.0165017 18.8875045 19.2103724 19.3612125 18.3102388

0.13 30.0318513 19.0242067 18.9026489 19.2538302 19.3779192 18.4051604

0.14 29.9435145 19.0818675 19.1287986 19.4181062 19.6038137 18.3045641

0.15 30.1116275 19.2562807 19.1500093 19.4697309 19.6375441 18.4712534

0.16 30.2205533 19.3453499 19.1712984 19.4076697 19.6487602 18.5467904

0.17 30.1101365 19.4222058 19.2657084 19.4938928 19.8527125 18.522754

0.18 30.203371 19.5228705 19.2799007 19.4854385 20.084752 18.6461158

0.19 30.361289 19.6798057 19.3339801 19.5719834 20.1399449 18.6929292

0.2 30.2905679 19.4882063 19.8805794 19.8315527 20.6686605 18.6153614

0.21 30.2442531 19.6269891 19.6425598 19.8000371 20.368719 18.6773988

0.22 30.2687404 19.7099345 19.6012517 19.9017975 20.4294938 18.7559431

0.23 30.3962779 19.8258537 19.6478908 19.920448 20.4442329 18.8192625

0.24 30.3536238 19.8919188 19.7489729 19.9910204 20.5586582 18.8425849

0.25 30.5980951 20.0166782 19.7934981 20.0151199 20.6009185 18.8543226

0.26 30.5262955 20.1309304 19.77312 20.040755 20.631445 18.9317371

0.27 30.7682444 20.2753006 19.8153177 20.0591445 20.6522568 19.0882733

0.28 30.6071426 20.2936028 20.0582533 20.2526247 20.8403935 18.9722707

0.29 30.8283528 20.6294641 19.9447297 20.1480514 20.8537445 19.1391575

0.3 30.8090411 20.502721 20.1089739 20.3112777 20.877902 19.0536013

0.31 30.9495912 20.6265345 20.0845561 20.3016315 20.9638476 19.0970917

0.32 30.9796028 20.8017265 20.1325389 20.3292015 20.9559057 19.1805412

0.33 31.0485869 20.7706302 20.2407681 20.4173911 21.1082159 19.2435781

0.34 31.0407692 21.0915937 20.2543201 20.4963505 21.1494113 19.3408104

0.35 31.144348 21.1378838 20.2421328 20.4724905 21.1146168 19.3540315

0.36 31.2471566 21.2323806 20.2955341 20.4594483 21.1764128 19.3724849

0.37 31.5176076 21.3677985 20.2826855 20.5121285 21.1802911 19.453771

0.38 31.5170748 21.3877596 20.2925852 20.586604 21.2470517 19.5758273

0.39 31.6247491 21.5688391 20.3043926 20.6009784 21.1981586 19.6443805

0.4 31.4080286 21.4077299 20.7472513 20.8801572 21.6181419 19.5442228

0.41 31.5095417 21.5865456 20.7686208 20.917665 21.604369 19.6016625

0.42 31.5623496 21.6698007 20.7958855 20.9324019 21.6854001 19.6061572

0.43 31.5589495 21.8024645 20.8028121 20.9309388 21.6694617 19.7556644

0.44 31.6551088 22.0302349 20.7985295 20.9705002 21.7078297 19.8078817

0.45 31.7942519 22.1902497 20.8144244 21.0177094 21.7045091 19.9042337

0.46 32.0484596 22.2068321 20.8253964 20.9928639 21.7698056 19.9807293

0.47 32.1196752 22.3955855 20.8562001 21.0448983 21.7572901 20.0746296

0.48 32.0854577 22.4513708 20.9058339 21.0594183 21.8029744 20.0927772

0.49 32.2540297 22.6500485 20.9137154 21.0920813 21.8332627 20.1895016

0.5 32.3452154 22.8078607 20.8577675 21.1685917 21.8192514 20.2072052

0.51 32.1984135 22.8657698 20.9697276 21.1592075 21.84647 20.3089854

0.52 32.350701 22.9153727 20.9223788 21.1660188 21.8620888 20.3535497

0.53 32.5435492 23.0583818 20.9101434 21.1943975 21.8889898 20.4198095

0.54 32.6735576 23.3362446 20.940475 21.2126745 21.9150279 20.4776288

0.55 32.552396 23.4563349 21.0115672 21.3114762 21.9270615 20.5968327

0.56 32.6238177 23.6287475 21.0281839 21.2703236 21.9650119 20.6828972

0.57 32.6343446 23.6672928 21.0308333 21.318652 21.9402112 20.7000149

0.58 32.9622293 24.1382793 20.821399 21.2086353 21.8037952 20.8999217

0.59 32.7511433 23.8559734 21.084037 21.3676335 22.0240115 20.8793227

0.6 32.9264316 24.089838 21.0917905 21.33121 22.0536561 20.9591697

0.61 33.0698501 24.4292789 20.6758448 21.1626771 21.700287 21.1327852

0.62 33.168009 24.4680939 20.7431475 21.1581465 21.7167382 21.1951714

0.63 33.2224517 24.5151767 20.7323905 21.2006499 21.7737078 21.3308959

0.64 33.4357509 24.7341065 20.7522505 21.2590069 21.7526453 21.4110871

0.65 33.3930646 24.8372442 20.8400873 21.2560431 21.7772175 21.3189638

0.66 33.5303465 24.9632981 20.7835932 21.2908117 21.8046593 21.4385653

0.67 33.6923757 25.3076689 20.833773 21.247672 21.7572341 21.6254135

0.68 33.8358905 25.5539383 20.7731845 21.2493427 21.7405265 21.7267372

0.69 33.8346817 25.4036351 20.7626379 21.2500194 21.7294093 21.740994

0.7 33.9215381 25.6175114 20.801992 21.2963804 21.7343347 21.8445549

0.71 34.0084622 25.6442176 20.8182536 21.3157413 21.7458019 21.9609258

0.72 34.0708078 25.8614359 20.786768 21.3292919 21.7974298 22.0134132

0.73 34.2934619 26.0934413 20.6454147 21.2311151 21.5837809 22.135924

0.74 34.3471748 26.1951862 20.6412978 21.2892576 21.587849 22.2872025

0.75 34.5098715 26.2744047 20.6169417 21.2170668 21.6281014 22.3191425

0.76 34.5671412 26.4468068 20.7182808 21.2856712 21.6379523 22.3830177

0.77 34.6278474 26.6301248 20.576863 21.2239543 21.5162011 22.5375235

0.78 34.8581334 26.862893 20.6176143 21.2964379 21.5536716 22.6844232

0.79 34.8954254 26.9453207 20.3639128 21.1265711 21.3771595 22.7056249

0.8 35.2385642 27.5792862 20.124524 20.9452986 21.1895906 22.9355864

0.81 35.3803901 27.58027 20.1734712 21.0301621 21.2228252 23.007119

0.82 35.2973231 27.5664835 20.1554215 21.0168394 21.2090694 23.1094183

0.83 35.3575967 27.7699208 20.1734592 20.9583883 21.2257603 23.0601116

0.84 35.5383962 27.9250531 20.0975674 21.0271952 21.1329698 23.2090003

0.85 35.6503862 28.1381095 20.1237122 20.9892296 21.1462563 23.2612432

0.86 35.6316854 28.1840755 20.1440614 21.063918 21.1781222 23.3168698

0.87 35.871253 28.3100044 19.9139578 20.9152243 20.9716039 23.5949492

0.88 35.9904642 28.5329124 19.9330221 20.8527251 20.9650205 23.6178331

0.89 36.1787784 28.8745663 19.8994188 20.9077596 20.8836913 23.8416257

0.9 36.2934756 28.9925247 19.891663 20.9718227 20.9019475 23.9525604

0.91 36.3481673 29.0280793 19.7241633 20.8356421 20.7337138 23.981622

0.92 36.6693442 29.4854091 19.5589572 20.6774122 20.5683004 24.2418306

0.93 36.6826939 29.5850697 19.5827711 20.7748681 20.5463242 24.2269548

0.94 36.7598693 29.6991971 19.4704749 20.6927417 20.4771118 24.3624584

0.95 36.8280572 29.8223523 19.5123962 20.7124146 20.5177585 24.4167849

0.96 37.0276031 30.078906 19.2839319 20.519774 20.314125 24.7292648

0.97 37.1074597 30.1981601 19.2890373 20.6275913 20.3304867 24.6582572

0.98 37.2318557 30.3985654 19.2280625 20.5889631 20.2299187 24.853706

0.99 37.3510697 30.5521908 19.2439965 20.5951552 20.22988 24.8645256

1.0 37.3986861 30.6678561 19.2738097 20.6480136 20.2564295 24.981312

3299.11798 2360.6072 2033.61513

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
o

rk
lo

a
d

 E
x
e
c
u

ti
o

n
 T

im
e
 (
s
e
c
)

Fraction of OLAP against OLTP queries

No Partitioning Full Vertical Partitioning
AutoStore (500) AutoStore (1000)
AutoStore (1500) AutoStore (2000)

(b) Varying query window size

Fig. 4. Comparison of No Partitioning, Full Vertical Partitioning, and AutoStore in
main-memory implementation.

5.2 Evaluating Query Performance

Now we evaluate the query execution performance of AutoStore in comparison
with No and Full Vertical Partitioning. In this evaluation we use a main-memory
implementation of AutoStore in Java. In order to show how AutoStore
adapts vertical partitioning to the query workload, we use a universal relation
de-normalized from a variant of the TPC-H schema [28]. Similar as in [28], we
choose a vertical partition with part key, revenue, order quantity, lineitem price,
week of year, month, supplier nation, category, brand, year, and day of week for
our experiments. Further, since we consider equal size attributes only, we map
all attributes to integer values, while preserving the same domain cardinality.
We use a scale factor (SF) of 1.

Figure 4(a) shows the performance of No Partitioning, Full Vertical Partition-
ing, AutoStore with O2Ppgd, AutoStore with O2P pgdm and AutoStore
with O2Ppgda. We vary the fraction of data accessed, i.e. both the attribute
and tuple selectivity along the x-axis. We vary the OLTP/OLAP read access
patterns as in Section 5.1, with a step size of 0.01%. From the figure we can
see that AutoStore automatically adapts to the changing workload, i.e. even
though it starts with no-partitioning configuration, AutoStore matches or im-
proves full vertical partitioning performance. Therefore, from now on we consider
only O2Ppgda. Figure 4(b) shows the performance of AutoStore when vary-
ing query window size. From the figure we observe that larger query windows,
e.g. query window of 2000 after 70% OLAP, become slower. This is because the
partitioning analyzer has to now estimate the costs of more number of queries
while analyzing partitioning schemes.

5.3 Evaluation over Real System

Modern database systems, e.g. PostgreSQL, have a very strong coupling between
their query processors and data stores. This makes it almost impossible to replace
the underlying data store without touching the entire software stack on top. This

Thursday, September 1, 2011

