MAP-REDUCI

DistriBUTED CoMPUTING MADE FEASY




KEY IDEAS

<
L (X)
v

2
(X
v

<>
(X
v

o
(X
N

-
L (X)
v

)4

>

>

>

)4

MapQ: Apply function f to each item of input list of key-
value pairs and emit intermediate key-value pairs

Reduce(: Aggregate intermediate key-value pairs and emit a
smaller (usually) list of values.

Automatic parallelization and distribution
Fault tolerance

Status and monitoring tools







PROGRAMMERS VIEW

-
L (X)
v

2
(X
v

<
L (X)
v

-
(X
v

A
(X
v

>

>

>

>

)4

Expressibility: real world problems can be expressed as MR

Clean abstraction: only need to provide map() and reduce()
functions

Hides messy details: parallelization, fault tolerance, locality
optimizations, load balancing

Scalability: batch process vast amounts of data on large
clusters of machines

Focus on problem




IMPACT

% Functional programming paradigms to large scale
computations

¢ Moving beyond RPC, threading, shared file access
% Large scale computations (order petabyte)
% Tolerate machine failures gracefully

% Simple execution engine




IMPACT

% Open source implementation (Hadoop)

% Query language on MapReduce (Pig Latin)

¢ Data warehousing (Hive)

¢ Comparison with parallel DBMSs (Pavlo et al)
¢ DBMS on top of Hadoop (HadoopDB)

% QOther libraries/platforms - EC2, Cloudg




THANKS

NECESSITY 1S MOTHER OF INVENTION




