
Alekh Jindal, Felix Martin Schuhknecht,
Jens Dittrich, Karen Khachatryan,

Alexander Bunte

How Achaeans Would
Construct Columns in Troy

Alekh 0
Jens 1

0

0,25

0,5

0,75

1
Number of Visas Received

Alekh Jens

Alekh 100
Jens 15

0

25

50

75

100
Health Level 5 days before CIDR

Alekh Jens

percentage

Alekh 25
Jens 150

0

50

100

150
Average Number of Slides per 20min talk

Alekh Jens

Alekh 35
Jens 4

0

50

100

150
Number of Slides Actually Prepared

Alekh Jens

“

What is the problem?

8

Row-stores

9

Column-stores

OLTP OLAP

10

11

OLTP OLAP?

12

Can we do efficient
OLAP in Row-stores?

Any solutions out there?

C-Tables

14

Query Processor

Relations

Physical Representation

File 1 File 2 File 3 File n....

Application
User

Database

* Nicolas Bruno. Teaching an Old Elephant New Tricks. CIDR 2009

*

C-Tables

15

product, is it possible to introduce column store technology in it to
support analytical workloads efficiently? All this without having
access to the source code of the database product.

1.3 Our Idea
Our idea is to use User Defined Functions (UDFs) as an access

layer for data storage and retrieval. To do so, we create and install
certain UDFs within the database system and exploit them when-
ever we need to store or access data. The data is actually stored
in a compressed column-oriented fashion on disk. But the UDFs
translate it into the row layout for the query processor. This means
we trick the database into believing that the data is still stored in
row layout, even though it is not. Finally, note that our approach is
very different from the two extremes of data stores: either having a
different product for different stores or doing deep seated changes
in the database product. We do neither of these, but still gain per-
formance significantly. The major benefits of our approach are as
follows:

(1.) Injects column store functionality into existing closed source
database products e.g. IBM DB2, Oracle.
(2.) Logical view of data remains unchanged for the outside user;
instead, the changes are transparently injected inside the DBMS.
(3.) Does not invade or make heavy changes in the system; rather,
uses lightweight UDFs to store and access the data.
(4.) Just fixes the storage layer (row, column, or even column-
grouped layouts) by inserting appropriate UDFs.
(5.) Reuses the query optimizer (at least partially) and therefore no
need to re-implement state-of-the-art database technologies.
(6.) User queries remain (almost) unchanged.

1.4 Contributions
Our main contributions are as follows:

(1.) We present Trojan Columns: a radically different technique
to inject column store functionality into a given database system.
Trojan Columns masks the database storage layer and translates
back and forth from users’ row-view to the physical column-view
of data. All the while, users’ view remains unchanged. (Section 2)
(2.) We present techniques to query Trojan Columns. We show
how to push down one or more operators in the query tree to the
UDFs. We describe how to rewrite the user queries in order to use
the UDFs for data access. (Section 3)
(3.) We present experimental results from DBMS-X over TPC-H
datasets. We evaluate Trojan Columns over there different bench-
marks including (1) unmodified TPC-H queries, (2) simplified
TPC-H queries as proposed in the C-Store paper [8], as well as
(3) micro-benchmarks to investigate the pros and cons of Trojan
Columns by varying several query parameters. (Section 4)

2. TROJAN COLUMNS
In this section, we present Trojan Columns: a novel way of in-

jecting column store functionality in a given row-oriented database
system. Trojan Columns uses table returning UDFs2 to translate the
user’s logical row view to the physical column view on disk. The
core philosophy of Trojan Columns is very similar to Trojan tech-
niques in Hadoop++ [4, 6]: affect the changes from inside without
changing the source code of the system. In the following, we de-
scribe how to create Trojan Columns.
2Typically database systems support three kinds of UDFs based on
their return types: (i) scalar value returning UDFs, (ii) row return-
ing UDFs, and (iii) table (of rows) returning UDFs.

Trojan Columns maps logical relations to physical tables as
follows. First, we horizontally partition a given relation T into
segments. Then, we store each attribute in a given segment
as a separate BLOB (binary large object) in a physical table
T_trojan(segment_ID, attribute_ID, blob_data). To illustrate, con-
sider the following entries of a Customer relation.

Customer
name phone market_segment
smith 2134 automobile
john 3425 household
kim 6756 furniture
joe 9878 building
mark 4312 building
steve 2435 automobile
jim 5766 household
ian 8789 household

Assuming a segment size of 4, i.e. 4 entries of each column are
mapped to a different row, Trojan Columns converts this to the fol-
lowing Customer_trojan table:

Customer_trojan
segment_ID attribute_ID blob_data

1 name smith, john, kim, joe
1 phone 2134, 3425, 6756, 9878
1 market_segment automobile, household, furniture, building
2 name mark, steve, jim, ian
2 phone 4312, 2435, 5766, 8789
2 market_segment building, automobile, household, household

We store each entry in the blob_data column of the above table as
a BLOB, thus mimicking a column-oriented storage. Experimen-
tally, we found bigger segment sizes, e.g. ⇠10M, to be more suit-
able. The data storage idea for Trojan Columns is inspired by SQL
Server Column Indexes [7]. However, in practice, Trojan Columns
is radically different from Column Indexes in several ways.

First, Trojan Columns uses UDFs to store the blob data instead
of native SQL support in case of Column Indexes. This not only
makes Trojan Columns plug-and-play, but also allows us to cus-
tomize the blob storage to user applications. For example, we might
prefer light weight compression (e.g. RLE) for read-intensive ap-
plication and higher compression ratio (e.g. Huffman) for archive
applications. Additionally, we could simply let the database sys-
tem apply the default compression method for blobs, e.g. TOAST
compression in PostgreSQL. Likewise, we might choose to sort the
data within or even across the blobs in any way, e.g. sort on attribute
IDs. Essentially, we have full control and flexibility to decide how
the blobs must reside on disk.

Second, Trojan Columns is quite different from SQL Server Col-
umn Indexes not only in data storage, but also in data access. Sim-
ilar to data storage, the access method is plugged into a given
database, instead of making deep changes in the data access layer
itself. Again, based on user applications, we have full control to
decide how to access the data. For example, for an airline com-
pany, we may choose to look for all possible connections only for
premium customers.

Third, Trojan Columns uses standard database tables to store the
blob, instead of a new index type in case of Column Indexes. The
database uses its own physical storage mechanism to persist the
blob table on disk. In other words, Trojan Columns simply pro-
vides a mechanism to decouple logical representation of relations
from their physical implementation, a.k.a physical data indepen-
dence, which, unfortunately, still remains a myth in several mod-
ern databases [10]. Finally, with Trojan Columns the database sys-
tem is entirely agnostic of the column store functionality injected
within, i.e. no new SQL keywords, or data types, or any entries
in the system catalog have to be added. The consequence is that
Trojan Columns is database product independent, i.e. they can be
plugged into any existing database product.

2

Relation

* Nicolas Bruno. Teaching an Old Elephant New Tricks. CIDR 2009

*

C-Tables

16

Sorted Relation

Physical Table

6.4 Parallel Base-table took-ups

7. CRACKING COMPRESSED COLUMNS
- query process in column stores exploit compression
- cracking is a side product of query processing
- cracking should exploit compression as well

7.1 Arithmetic Compression

7.2 Code Grouping

8. CRACKING VS FULL INDEXING

8.1 Comparing against full sorting
- different sorting algorithms (quick, radix)

8.2 Comparing against indexes
- AVL tree, B+-tree
- main-memory index structures (CSS, FAST, etc?)

8.3 Effect of varying selectivity
- Cracking / Indexing over selectivity

9. LESSONS LEARNED
- cracking has come a long way (still more to go...)
- still, lot of potential to improve core cracking performance
- cracking needs to adapt to modern trends e.g. multi-cores
- cracking needs to catch up with modern index structures

T market segment
f v c
1 automobile 2
3 building 2
5 furniture 1
6 household 3

T phone
f v
1 2134
2 2435
3 4312
4 9878
5 6756
6 3425
7 5766
8 8789

T name
f v
1 smith
2 steve
3 mark
4 joe
5 kim
6 john
7 jim
8 ian

APPENDIX

2

6.4 Parallel Base-table took-ups

7. CRACKING COMPRESSED COLUMNS
- query process in column stores exploit compression
- cracking is a side product of query processing
- cracking should exploit compression as well

7.1 Arithmetic Compression

7.2 Code Grouping

8. CRACKING VS FULL INDEXING

8.1 Comparing against full sorting
- different sorting algorithms (quick, radix)

8.2 Comparing against indexes
- AVL tree, B+-tree
- main-memory index structures (CSS, FAST, etc?)

8.3 Effect of varying selectivity
- Cracking / Indexing over selectivity

9. LESSONS LEARNED
- cracking has come a long way (still more to go...)
- still, lot of potential to improve core cracking performance
- cracking needs to adapt to modern trends e.g. multi-cores
- cracking needs to catch up with modern index structures

Customer
name phone market segment
smith 2134 automobile
steve 2435 automobile
mark 4312 building
joe 9878 building
kim 6756 furniture
john 3425 household
jim 5766 household
ian 8789 household

T market segment
f v c
1 automobile 2
3 building 2
5 furniture 1
6 household 3

T phone
f v
1 2134
2 2435
3 4312
4 9878
5 6756
6 3425
7 5766
8 8789

APPENDIX

T name
f v
1 smith
2 steve
3 mark
4 joe
5 kim
6 john
7 jim
8 ian

2

* Nicolas Bruno. Teaching an Old Elephant New Tricks. CIDR 2009

*

C-Tables

17

Sorted Relation

Physical Table

6.4 Parallel Base-table took-ups

7. CRACKING COMPRESSED COLUMNS
- query process in column stores exploit compression
- cracking is a side product of query processing
- cracking should exploit compression as well

7.1 Arithmetic Compression

7.2 Code Grouping

8. CRACKING VS FULL INDEXING

8.1 Comparing against full sorting
- different sorting algorithms (quick, radix)

8.2 Comparing against indexes
- AVL tree, B+-tree
- main-memory index structures (CSS, FAST, etc?)

8.3 Effect of varying selectivity
- Cracking / Indexing over selectivity

9. LESSONS LEARNED
- cracking has come a long way (still more to go...)
- still, lot of potential to improve core cracking performance
- cracking needs to adapt to modern trends e.g. multi-cores
- cracking needs to catch up with modern index structures

T market segment
f v c
1 automobile 2
3 building 2
5 furniture 1
6 household 3

T phone
f v
1 2134
2 2435
3 4312
4 9878
5 6756
6 3425
7 5766
8 8789

T name
f v
1 smith
2 steve
3 mark
4 joe
5 kim
6 john
7 jim
8 ian

APPENDIX

2

6.4 Parallel Base-table took-ups

7. CRACKING COMPRESSED COLUMNS
- query process in column stores exploit compression
- cracking is a side product of query processing
- cracking should exploit compression as well

7.1 Arithmetic Compression

7.2 Code Grouping

8. CRACKING VS FULL INDEXING

8.1 Comparing against full sorting
- different sorting algorithms (quick, radix)

8.2 Comparing against indexes
- AVL tree, B+-tree
- main-memory index structures (CSS, FAST, etc?)

8.3 Effect of varying selectivity
- Cracking / Indexing over selectivity

9. LESSONS LEARNED
- cracking has come a long way (still more to go...)
- still, lot of potential to improve core cracking performance
- cracking needs to adapt to modern trends e.g. multi-cores
- cracking needs to catch up with modern index structures

Customer
name phone market segment
smith 2134 automobile
steve 2435 automobile
mark 4312 building
joe 9878 building
kim 6756 furniture
john 3425 household
jim 5766 household
ian 8789 household

T market segment
f v c
1 automobile 2
3 building 2
5 furniture 1
6 household 3

T phone
f v
1 2134
2 2435
3 4312
4 9878
5 6756
6 3425
7 5766
8 8789

APPENDIX

T name
f v
1 smith
2 steve
3 mark
4 joe
5 kim
6 john
7 jim
8 ian

2

* Nicolas Bruno. Teaching an Old Elephant New Tricks. CIDR 2009

*

C-Tables

18

Sorted Relation

Physical Table

6.4 Parallel Base-table took-ups

7. CRACKING COMPRESSED COLUMNS
- query process in column stores exploit compression
- cracking is a side product of query processing
- cracking should exploit compression as well

7.1 Arithmetic Compression

7.2 Code Grouping

8. CRACKING VS FULL INDEXING

8.1 Comparing against full sorting
- different sorting algorithms (quick, radix)

8.2 Comparing against indexes
- AVL tree, B+-tree
- main-memory index structures (CSS, FAST, etc?)

8.3 Effect of varying selectivity
- Cracking / Indexing over selectivity

9. LESSONS LEARNED
- cracking has come a long way (still more to go...)
- still, lot of potential to improve core cracking performance
- cracking needs to adapt to modern trends e.g. multi-cores
- cracking needs to catch up with modern index structures

T market segment
f v c
1 automobile 2
3 building 2
5 furniture 1
6 household 3

T phone
f v
1 2134
2 2435
3 4312
4 9878
5 6756
6 3425
7 5766
8 8789

T name
f v
1 smith
2 steve
3 mark
4 joe
5 kim
6 john
7 jim
8 ian

APPENDIX

2

6.4 Parallel Base-table took-ups

7. CRACKING COMPRESSED COLUMNS
- query process in column stores exploit compression
- cracking is a side product of query processing
- cracking should exploit compression as well

7.1 Arithmetic Compression

7.2 Code Grouping

8. CRACKING VS FULL INDEXING

8.1 Comparing against full sorting
- different sorting algorithms (quick, radix)

8.2 Comparing against indexes
- AVL tree, B+-tree
- main-memory index structures (CSS, FAST, etc?)

8.3 Effect of varying selectivity
- Cracking / Indexing over selectivity

9. LESSONS LEARNED
- cracking has come a long way (still more to go...)
- still, lot of potential to improve core cracking performance
- cracking needs to adapt to modern trends e.g. multi-cores
- cracking needs to catch up with modern index structures

Customer
name phone market segment
smith 2134 automobile
steve 2435 automobile
mark 4312 building
joe 9878 building
kim 6756 furniture
john 3425 household
jim 5766 household
ian 8789 household

T market segment
f v c
1 automobile 2
3 building 2
5 furniture 1
6 household 3

T phone
f v
1 2134
2 2435
3 4312
4 9878
5 6756
6 3425
7 5766
8 8789

APPENDIX

T name
f v
1 smith
2 steve
3 mark
4 joe
5 kim
6 john
7 jim
8 ian

2

* Nicolas Bruno. Teaching an Old Elephant New Tricks. CIDR 2009

*

C-Tables

19

Sorted Relation

Physical Table

6.4 Parallel Base-table took-ups

7. CRACKING COMPRESSED COLUMNS
- query process in column stores exploit compression
- cracking is a side product of query processing
- cracking should exploit compression as well

7.1 Arithmetic Compression

7.2 Code Grouping

8. CRACKING VS FULL INDEXING

8.1 Comparing against full sorting
- different sorting algorithms (quick, radix)

8.2 Comparing against indexes
- AVL tree, B+-tree
- main-memory index structures (CSS, FAST, etc?)

8.3 Effect of varying selectivity
- Cracking / Indexing over selectivity

9. LESSONS LEARNED
- cracking has come a long way (still more to go...)
- still, lot of potential to improve core cracking performance
- cracking needs to adapt to modern trends e.g. multi-cores
- cracking needs to catch up with modern index structures

T market segment
f v c
1 automobile 2
3 building 2
5 furniture 1
6 household 3

T phone
f v
1 2134
2 2435
3 4312
4 9878
5 6756
6 3425
7 5766
8 8789

T name
f v
1 smith
2 steve
3 mark
4 joe
5 kim
6 john
7 jim
8 ian

APPENDIX

2

6.4 Parallel Base-table took-ups

7. CRACKING COMPRESSED COLUMNS
- query process in column stores exploit compression
- cracking is a side product of query processing
- cracking should exploit compression as well

7.1 Arithmetic Compression

7.2 Code Grouping

8. CRACKING VS FULL INDEXING

8.1 Comparing against full sorting
- different sorting algorithms (quick, radix)

8.2 Comparing against indexes
- AVL tree, B+-tree
- main-memory index structures (CSS, FAST, etc?)

8.3 Effect of varying selectivity
- Cracking / Indexing over selectivity

9. LESSONS LEARNED
- cracking has come a long way (still more to go...)
- still, lot of potential to improve core cracking performance
- cracking needs to adapt to modern trends e.g. multi-cores
- cracking needs to catch up with modern index structures

Customer
name phone market segment
smith 2134 automobile
steve 2435 automobile
mark 4312 building
joe 9878 building
kim 6756 furniture
john 3425 household
jim 5766 household
ian 8789 household

T market segment
f v c
1 automobile 2
3 building 2
5 furniture 1
6 household 3

T phone
f v
1 2134
2 2435
3 4312
4 9878
5 6756
6 3425
7 5766
8 8789

APPENDIX

T name
f v
1 smith
2 steve
3 mark
4 joe
5 kim
6 john
7 jim
8 ian

2

* Nicolas Bruno. Teaching an Old Elephant New Tricks. CIDR 2009

*

C-Tables

20

Sorted Relation

Physical Table

6.4 Parallel Base-table took-ups

7. CRACKING COMPRESSED COLUMNS
- query process in column stores exploit compression
- cracking is a side product of query processing
- cracking should exploit compression as well

7.1 Arithmetic Compression

7.2 Code Grouping

8. CRACKING VS FULL INDEXING

8.1 Comparing against full sorting
- different sorting algorithms (quick, radix)

8.2 Comparing against indexes
- AVL tree, B+-tree
- main-memory index structures (CSS, FAST, etc?)

8.3 Effect of varying selectivity
- Cracking / Indexing over selectivity

9. LESSONS LEARNED
- cracking has come a long way (still more to go...)
- still, lot of potential to improve core cracking performance
- cracking needs to adapt to modern trends e.g. multi-cores
- cracking needs to catch up with modern index structures

T market segment
f v c
1 automobile 2
3 building 2
5 furniture 1
6 household 3

T phone
f v
1 2134
2 2435
3 4312
4 9878
5 6756
6 3425
7 5766
8 8789

T name
f v
1 smith
2 steve
3 mark
4 joe
5 kim
6 john
7 jim
8 ian

APPENDIX

2

6.4 Parallel Base-table took-ups

7. CRACKING COMPRESSED COLUMNS
- query process in column stores exploit compression
- cracking is a side product of query processing
- cracking should exploit compression as well

7.1 Arithmetic Compression

7.2 Code Grouping

8. CRACKING VS FULL INDEXING

8.1 Comparing against full sorting
- different sorting algorithms (quick, radix)

8.2 Comparing against indexes
- AVL tree, B+-tree
- main-memory index structures (CSS, FAST, etc?)

8.3 Effect of varying selectivity
- Cracking / Indexing over selectivity

9. LESSONS LEARNED
- cracking has come a long way (still more to go...)
- still, lot of potential to improve core cracking performance
- cracking needs to adapt to modern trends e.g. multi-cores
- cracking needs to catch up with modern index structures

T market segment
f v c
1 automobile 2
3 building 2
5 furniture 1
6 household 3

T phone
f v
1 2134
2 2435
3 4312
4 9878
5 6756
6 3425
7 5766
8 8789

T name
f v
1 smith
2 steve
3 mark
4 joe
5 kim
6 john
7 jim
8 ian

APPENDIX

2

6.4 Parallel Base-table took-ups

7. CRACKING COMPRESSED COLUMNS
- query process in column stores exploit compression
- cracking is a side product of query processing
- cracking should exploit compression as well

7.1 Arithmetic Compression

7.2 Code Grouping

8. CRACKING VS FULL INDEXING

8.1 Comparing against full sorting
- different sorting algorithms (quick, radix)

8.2 Comparing against indexes
- AVL tree, B+-tree
- main-memory index structures (CSS, FAST, etc?)

8.3 Effect of varying selectivity
- Cracking / Indexing over selectivity

9. LESSONS LEARNED
- cracking has come a long way (still more to go...)
- still, lot of potential to improve core cracking performance
- cracking needs to adapt to modern trends e.g. multi-cores
- cracking needs to catch up with modern index structures

T market segment
f v c
1 automobile 2
3 building 2
5 furniture 1
6 household 3

T phone
f v
1 2134
2 2435
3 4312
4 9878
5 6756
6 3425
7 5766
8 8789

T name
f v
1 smith
2 steve
3 mark
4 joe
5 kim
6 john
7 jim
8 ian

APPENDIX

2

6.4 Parallel Base-table took-ups

7. CRACKING COMPRESSED COLUMNS
- query process in column stores exploit compression
- cracking is a side product of query processing
- cracking should exploit compression as well

7.1 Arithmetic Compression

7.2 Code Grouping

8. CRACKING VS FULL INDEXING

8.1 Comparing against full sorting
- different sorting algorithms (quick, radix)

8.2 Comparing against indexes
- AVL tree, B+-tree
- main-memory index structures (CSS, FAST, etc?)

8.3 Effect of varying selectivity
- Cracking / Indexing over selectivity

9. LESSONS LEARNED
- cracking has come a long way (still more to go...)
- still, lot of potential to improve core cracking performance
- cracking needs to adapt to modern trends e.g. multi-cores
- cracking needs to catch up with modern index structures

Customer
name phone market segment
smith 2134 automobile
steve 2435 automobile
mark 4312 building
joe 9878 building
kim 6756 furniture
john 3425 household
jim 5766 household
ian 8789 household

T market segment
f v c
1 automobile 2
3 building 2
5 furniture 1
6 household 3

T phone
f v
1 2134
2 2435
3 4312
4 9878
5 6756
6 3425
7 5766
8 8789

APPENDIX

T name
f v
1 smith
2 steve
3 mark
4 joe
5 kim
6 john
7 jim
8 ian

2

JOINS !

* Nicolas Bruno. Teaching an Old Elephant New Tricks. CIDR 2009

*

21

JOINS !

Cardinality Row C-Tables
10 34.970995012 797.5526469

100 67.663774343 2538.5132185
1000 37.318241619 2947.36455

#Attributes 1 2 3 4 5 6 7 8 9 10
CTables: 0.806700924 1.062212219 1.148258234 1.288950746 2.718275768 14.116931317 104.13242082 277.93085639 520.7912971 1109.8817201
RowTime: 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332

#Attributes 1 2 3 4 5
CTables: 0.899413891 1.069284213 29.501207334 438.37360402 1948.4690628
RowTime: 22.552300534 22.552300534 22.552300534 22.552300534 22.552300534

#Attributes 1 2
CTables: 0.821990668 691.13050088
RowTime: 30.012339367 30.012339367

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

Q
ue

ry
 T

im
e

(s
ec

)

referenced Attributes

C-Table Standard Row

0.1

1

10

100

1000

10000

1 2 3 4 5

Q
ue

ry
 T

im
e

(s
ec

)

referenced Attributes

C-Table Standard Row

0.1

1

10

100

1000

10000

1 2

Q
ue

ry
 T

im
e

(s
ec

)

referenced Attributes

C-Table Standard Row

Table Row C-Tables Trojan Columns
lineitem 313.4821 28888.57 179.446233
orders 64.99177 6394.601 47.2320079
part 14.50529 909.4416 14.2245235

Query Row C-Tables Trojan Columns
Q1 8.1957160983 3.3134700297 211.392690586 24.5871483 9.94041009 634.178072
Q6 8.2291799813 2.182174931 96.166507549 24.6875399 6.54652479 288.499523
Q12 9.7983991687 5.0690194677 5457.368314045 29.3951975 15.2070584 16372.1049
Q14 8.6118758027 4.4059389703 335.551381686333 25.8356274 13.2178169 1006.65415

(a) Cardinality = 10

Cardinality Row C-Tables
10 34.970995012 797.5526469

100 67.663774343 2538.5132185
1000 37.318241619 2947.36455

#Attributes 1 2 3 4 5 6 7 8 9 10
CTables: 0.806700924 1.062212219 1.148258234 1.288950746 2.718275768 14.116931317 104.13242082 277.93085639 520.7912971 1109.8817201
RowTime: 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332

#Attributes 1 2 3 4 5
CTables: 0.899413891 1.069284213 29.501207334 438.37360402 1948.4690628
RowTime: 22.552300534 22.552300534 22.552300534 22.552300534 22.552300534

#Attributes 1 2
CTables: 0.821990668 691.13050088
RowTime: 30.012339367 30.012339367

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

Q
ue

ry
 T

im
e

(s
ec

)

referenced Attributes

C-Table Standard Row

0.1

1

10

100

1000

10000

1 2 3 4 5

Q
ue

ry
 T

im
e

(s
ec

)

referenced Attributes

C-Table Standard Row

0.1

1

10

100

1000

10000

1 2

Q
ue

ry
 T

im
e

(s
ec

)

referenced Attributes

C-Table Standard Row

Table Row C-Tables Trojan Columns
lineitem 313.4821 28888.57 179.446233
orders 64.99177 6394.601 47.2320079
part 14.50529 909.4416 14.2245235

Query Row C-Tables Trojan Columns
Q1 8.1957160983 3.3134700297 211.392690586 24.5871483 9.94041009 634.178072
Q6 8.2291799813 2.182174931 96.166507549 24.6875399 6.54652479 288.499523
Q12 9.7983991687 5.0690194677 5457.368314045 29.3951975 15.2070584 16372.1049
Q14 8.6118758027 4.4059389703 335.551381686333 25.8356274 13.2178169 1006.65415

(b) Cardinality = 100

Cardinality Row C-Tables
10 34.970995012 797.5526469

100 67.663774343 2538.5132185
1000 37.318241619 2947.36455

#Attributes 1 2 3 4 5 6 7 8 9 10
CTables: 0.806700924 1.062212219 1.148258234 1.288950746 2.718275768 14.116931317 104.13242082 277.93085639 520.7912971 1109.8817201
RowTime: 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332

#Attributes 1 2 3 4 5
CTables: 0.899413891 1.069284213 29.501207334 438.37360402 1948.4690628
RowTime: 22.552300534 22.552300534 22.552300534 22.552300534 22.552300534

#Attributes 1 2
CTables: 0.821990668 691.13050088
RowTime: 30.012339367 30.012339367

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

Q
ue

ry
 T

im
e

(s
ec

)

referenced Attributes

C-Table Standard Row

0.1

1

10

100

1000

10000

1 2 3 4 5

Q
ue

ry
 T

im
e

(s
ec

)

referenced Attributes

C-Table Standard Row

0.1

1

10

100

1000

10000

1 2

Q
ue

ry
 T

im
e

(s
ec

)

referenced Attributes

C-Table Standard Row

Table Row C-Tables Trojan Columns
lineitem 313.4821 28888.57 179.446233
orders 64.99177 6394.601 47.2320079
part 14.50529 909.4416 14.2245235

Query Row C-Tables Trojan Columns
Q1 8.1957160983 3.3134700297 211.392690586 24.5871483 9.94041009 634.178072
Q6 8.2291799813 2.182174931 96.166507549 24.6875399 6.54652479 288.499523
Q12 9.7983991687 5.0690194677 5457.368314045 29.3951975 15.2070584 16372.1049
Q14 8.6118758027 4.4059389703 335.551381686333 25.8356274 13.2178169 1006.65415

(c) Cardinality = 1000

Figure 7: Comparing query times of CTable and standard row for different attribute cardinalities.

with larger segment sizes. However, the improvement is more when
changing segment size from 100K to 1M than when changing the
segment size from 1M to 10M.

Segment Size 100K 1M 10M
Upload Time (sec) 2824.79 1681.26 1451.39

Table 5: Upload times with varying segment size.

100K 1M 10M
Q1

Q6

Q12

Q14

22.476829336 18.480173139 19.293982609 67.43049 55.44052 57.88195
18.025607187 8.8415023293 8.6532381493 54.0768216 26.52451 25.95971
41.50584355 37.162655855 37.3319054 124.5175 111.488 111.9957

37.480527882 31.824953182 30.788114368 112.4416 95.47486 92.36434

0

15

30

45

60

Q1 Q6 Q12 Q14

Qu
er

y T
im

e
(se

c)

Segment Size = 100K
Segment Size = 1M
Segment Size = 10M

100K 1M 10M
Trojan Columns 2824.789 1681.258 1451.387

Figure 8: TPC-H query runtimes with varying segment size.

D. QUERY COST BREAK-DOWN
In order to understand where we can further improve the UDFs,

we need to see its cost breakdown. Figure 9(a) shows the break-
down of UDF processing time into four costs: fetching data, de-
compressing data, processing (selections, grouping/aggregation),
and outputting the results. From the figure we can see that process-
ing costs dominate in query Q1 while outputting costs dominate in
query Q14. However, fetching and decompression are at the ma-
jor costs for Q6 and Q12. To contrast the effect of compression,
Figure 9(b) shows the cost breakdown for uncompressed data. We
can see that there are no decompression costs now, however the
fetching costs go up significantly and dominate most queries.

Fetch Decompress Processing Output Rest Total Leaf Overall 3.Overall
Q1
Q6
Q12
Q14

6.600 4.480 12.353 0.001 23.434 48.839585487 146.51875646
5.547 3.486 2.482 0 11.515 27.51738229 82.552146869
3.948 4.190 2.614 8.587 19.339 78.384223458 235.15267037
6.356 3.085 1.692 18.703 29.836 55.935707906 167.80712372

Fetch Decompress Processing Output Rest Total Leaf Overall 3.Overall
Q1
Q6
Q12
Q14

20.520 0 12.656 0.001 0 33.177 19.293982609 48.839585487 146.51875646
15.672 0 2.459 0 0 18.131 8.6532381493 27.51738229 82.552146869
20.330 0 2.587 8.392 0 31.309 16.504629093 78.384223458 235.15267037
13.885 0 1.637 18.453 0 33.975 25.592795096 55.935707906 167.80712372

0

10

20

30

40

50

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Fetch Decompress
Process Output

0

10

20

30

40

50

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Fetch Decompress
Process Output

Fetch Decompress Processing Output Rest Total Leaf Overall 3.Overall
Q1

Q6

Q12

Q14

9.470 10.003 11.210 0.011 30.694 48.839585487 146.51875646

7.572 6.866 1.310 0.012 15.76 27.51738229 82.552146869

6.732 9.658 2.093 6.335 24.818 78.384223458 235.15267037

18.565 4.970 1.383 19.638 44.556 55.935707906 167.80712372

0

10

20

30

40

50

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Fetch Decompress
Process Output

(a) With compression

Fetch Decompress Processing Output Rest Total Leaf Overall 3.Overall
Q1
Q6
Q12
Q14

6.600 4.480 12.353 0.001 23.434 48.839585487 146.51875646
5.547 3.486 2.482 0 11.515 27.51738229 82.552146869
3.948 4.190 2.614 8.587 19.339 78.384223458 235.15267037
6.356 3.085 1.692 18.703 29.836 55.935707906 167.80712372

Fetch Decompress Processing Output Rest Total Leaf Overall 3.Overall
Q1
Q6
Q12
Q14

20.520 0 12.656 0.001 0 33.177 19.293982609 48.839585487 146.51875646
15.672 0 2.459 0 0 18.131 8.6532381493 27.51738229 82.552146869
20.330 0 2.587 8.392 0 31.309 16.504629093 78.384223458 235.15267037
13.885 0 1.637 18.453 0 33.975 25.592795096 55.935707906 167.80712372

0

10

20

30

40

50

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Fetch Decompress
Process Output

0

10

20

30

40

50

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Fetch Decompress
Process Output

Fetch Decompress Processing Output Rest Total Leaf Overall 3.Overall
Q1

Q6

Q12

Q14

9.470 10.003 11.210 0.011 30.694 48.839585487 146.51875646

7.572 6.866 1.310 0.012 15.76 27.51738229 82.552146869

6.732 9.658 2.093 6.335 24.818 78.384223458 235.15267037

18.565 4.970 1.383 19.638 44.556 55.935707906 167.80712372

0

10

20

30

40

50

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Fetch Decompress
Process Output

(b) Without compression

Figure 9: Query cost breakdown (in seconds) for Trojan
Columns over TPC-H query set 1.

E. STORED PROCEDURES
As discussed in Section A, we considered two interfaces to

implement Trojan Columns in DBMS-X. In the experiments, we
showed results from the Table UDF Interface implementation in
DBMS-X. This was because the UDFs thus created can be eas-
ily nested in SQL queries without much changed (we just need to
change the FROM clause). In contrast, the Call Level Interface
(CLI) in DBMS-X needs a CALL statement to invoke the UDF and
store the results in a temporary table. This temporary table must be
then used by the remainder of the query. For the sake of complete-
ness, we also present the results from the CLI implementation of
Trojan Columns.

Figure 10 shows the runtimes of Trojan Columns using stored
procedures (SP) for TPC-H query set 1. We can see that except for
query Q14, Trojan Columns using stored procedures are very close
to those Trojan Columns using UDFs. Stored procedures are slow
for Query Q14 because it produces a large number of output tuples.
Since stored procedures cannot return the results, they must write
these output tuples into another table.

Standard Row Trojan Columns Trojan Columns (SP)

Lineitem
Orders
Part
customer
partsupp
supplier
nation
region

771.41172 1451.3873 365.11702086
484.01618 369.97302
100.43459 59.400493
89.459029 ***
401.02168 ***
10.144428 ***
5.5904746 ***
5.8037666 ***

0

375

750

1125

1500

Lineitem Orders Part

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

Standard Row Trojan Columns Trojan Columns (SP) Standard Row Trojan Columns Trojan Columns (O) Trojan Columns (SP) Factor Factor

Q1
Q6
Q12
Q14
Q3
Q5
Q10
Q19
Q2
Q4
Q8
Q15
Q17

76.730296 19.293983 24.208052774 230.19089 57.881948 72.62415832 3.977 3.17
77.589034 8.6532381 11.235220175 232.7671 25.959714 33.70566052 8.966 6.906
92.486038 37.331905 40.598335758 277.45811 111.99572 121.7950073 2.477 2.278
81.207649 30.788114 59.597473787 243.62295 92.364343 178.7924214 2.638 1.363
111.88261 809.38127 335.64782 2428.1438 0.138
99.729039 169.34457 299.18712 508.0337 0.589
110.93664 119.46429 332.80993 358.39288 0.929
79.140857 43.115296 237.42257 129.34589 227.3616356 1.836
0 0
110.75535 0 332.26604
97.387131 97.664365 292.16139 292.9931 0.997
80.508382 66.914039 241.52515 200.74212 1.203
0 0
0 0

0

25

50

75

100

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

0

35

70

105

140

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns (UDF)
Trojan Columns (SP)

Figure 10: Query times (in seconds) with stored procedures.

F. C-TABLE EVALUATION
In order to investigate C-Table in more detail, we ran some

micro-benchmarks on them. We take three synthetic datasets. Each
dataset contains integer attributes with the same cardinality (10,
100, and 1000 respectively). For each dataset, we create C-Tables
over its attributes and vary the number of referenced attributes.

Figure 7 shows the results. We can see from the figure that for
lower cardinalities C-Tables work very well compared to standard
row. For instance, for cardinality 10, C-Tables are better than row
for up to 6 referenced attributes. However, for higher cardinalities
e.g. 1000, C-Tables do not work so well. This is because the tuple
reconstruction costs overshadow the benefits of RLE encoding in
C-Tables.

* Nicolas Bruno. Teaching an Old Elephant New Tricks. CIDR 2009

*C-Tables

22

Cardinality Row C-Tables
10 34.970995012 797.5526469

100 67.663774343 2538.5132185
1000 37.318241619 2947.36455

#Attributes 1 2 3 4 5 6 7 8 9 10
CTables: 0.806700924 1.062212219 1.148258234 1.288950746 2.718275768 14.116931317 104.13242082 277.93085639 520.7912971 1109.8817201
RowTime: 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332

#Attributes 1 2 3 4 5
CTables: 0.899413891 1.069284213 29.501207334 438.37360402 1948.4690628
RowTime: 22.552300534 22.552300534 22.552300534 22.552300534 22.552300534

#Attributes 1 2
CTables: 0.821990668 691.13050088
RowTime: 30.012339367 30.012339367

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

Q
ue

ry
 T

im
e

(s
ec

)

referenced Attributes

C-Table Standard Row

0.1

1

10

100

1000

10000

1 2 3 4 5

Q
ue

ry
 T

im
e

(s
ec

)

referenced Attributes

C-Table Standard Row

0.1

1

10

100

1000

10000

1 2

Q
ue

ry
 T

im
e

(s
ec

)

referenced Attributes

C-Table Standard Row

Table Row C-Tables Trojan Columns
lineitem 313.4821 28888.57 179.446233
orders 64.99177 6394.601 47.2320079
part 14.50529 909.4416 14.2245235

Query Row C-Tables Trojan Columns
Q1 8.1957160983 3.3134700297 211.392690586 24.5871483 9.94041009 634.178072
Q6 8.2291799813 2.182174931 96.166507549 24.6875399 6.54652479 288.499523
Q12 9.7983991687 5.0690194677 5457.368314045 29.3951975 15.2070584 16372.1049
Q14 8.6118758027 4.4059389703 335.551381686333 25.8356274 13.2178169 1006.65415

(a) Cardinality = 10

Cardinality Row C-Tables
10 34.970995012 797.5526469

100 67.663774343 2538.5132185
1000 37.318241619 2947.36455

#Attributes 1 2 3 4 5 6 7 8 9 10
CTables: 0.806700924 1.062212219 1.148258234 1.288950746 2.718275768 14.116931317 104.13242082 277.93085639 520.7912971 1109.8817201
RowTime: 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332

#Attributes 1 2 3 4 5
CTables: 0.899413891 1.069284213 29.501207334 438.37360402 1948.4690628
RowTime: 22.552300534 22.552300534 22.552300534 22.552300534 22.552300534

#Attributes 1 2
CTables: 0.821990668 691.13050088
RowTime: 30.012339367 30.012339367

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

Q
ue

ry
 T

im
e

(s
ec

)

referenced Attributes

C-Table Standard Row

0.1

1

10

100

1000

10000

1 2 3 4 5

Q
ue

ry
 T

im
e

(s
ec

)

referenced Attributes

C-Table Standard Row

0.1

1

10

100

1000

10000

1 2

Q
ue

ry
 T

im
e

(s
ec

)

referenced Attributes

C-Table Standard Row

Table Row C-Tables Trojan Columns
lineitem 313.4821 28888.57 179.446233
orders 64.99177 6394.601 47.2320079
part 14.50529 909.4416 14.2245235

Query Row C-Tables Trojan Columns
Q1 8.1957160983 3.3134700297 211.392690586 24.5871483 9.94041009 634.178072
Q6 8.2291799813 2.182174931 96.166507549 24.6875399 6.54652479 288.499523
Q12 9.7983991687 5.0690194677 5457.368314045 29.3951975 15.2070584 16372.1049
Q14 8.6118758027 4.4059389703 335.551381686333 25.8356274 13.2178169 1006.65415

(b) Cardinality = 100

Cardinality Row C-Tables
10 34.970995012 797.5526469

100 67.663774343 2538.5132185
1000 37.318241619 2947.36455

#Attributes 1 2 3 4 5 6 7 8 9 10
CTables: 0.806700924 1.062212219 1.148258234 1.288950746 2.718275768 14.116931317 104.13242082 277.93085639 520.7912971 1109.8817201
RowTime: 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332 22.932490332

#Attributes 1 2 3 4 5
CTables: 0.899413891 1.069284213 29.501207334 438.37360402 1948.4690628
RowTime: 22.552300534 22.552300534 22.552300534 22.552300534 22.552300534

#Attributes 1 2
CTables: 0.821990668 691.13050088
RowTime: 30.012339367 30.012339367

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

Q
ue

ry
 T

im
e

(s
ec

)

referenced Attributes

C-Table Standard Row

0.1

1

10

100

1000

10000

1 2 3 4 5

Q
ue

ry
 T

im
e

(s
ec

)

referenced Attributes

C-Table Standard Row

0.1

1

10

100

1000

10000

1 2

Q
ue

ry
 T

im
e

(s
ec

)

referenced Attributes

C-Table Standard Row

Table Row C-Tables Trojan Columns
lineitem 313.4821 28888.57 179.446233
orders 64.99177 6394.601 47.2320079
part 14.50529 909.4416 14.2245235

Query Row C-Tables Trojan Columns
Q1 8.1957160983 3.3134700297 211.392690586 24.5871483 9.94041009 634.178072
Q6 8.2291799813 2.182174931 96.166507549 24.6875399 6.54652479 288.499523
Q12 9.7983991687 5.0690194677 5457.368314045 29.3951975 15.2070584 16372.1049
Q14 8.6118758027 4.4059389703 335.551381686333 25.8356274 13.2178169 1006.65415

(c) Cardinality = 1000

Figure 7: Comparing query times of CTable and standard row for different attribute cardinalities.

with larger segment sizes. However, the improvement is more when
changing segment size from 100K to 1M than when changing the
segment size from 1M to 10M.

Segment Size 100K 1M 10M
Upload Time (sec) 2824.79 1681.26 1451.39

Table 5: Upload times with varying segment size.

100K 1M 10M
Q1

Q6

Q12

Q14

22.476829336 18.480173139 19.293982609 67.43049 55.44052 57.88195
18.025607187 8.8415023293 8.6532381493 54.0768216 26.52451 25.95971

41.50584355 37.162655855 37.3319054 124.5175 111.488 111.9957
37.480527882 31.824953182 30.788114368 112.4416 95.47486 92.36434

0

15

30

45

60

Q1 Q6 Q12 Q14

Qu
er

y T
im

e
(se

c)

Segment Size = 100K
Segment Size = 1M
Segment Size = 10M

100K 1M 10M
Trojan Columns 2824.789 1681.258 1451.387

Figure 8: TPC-H query runtimes with varying segment size.

D. QUERY COST BREAK-DOWN
In order to understand where we can further improve the UDFs,

we need to see its cost breakdown. Figure 9(a) shows the break-
down of UDF processing time into four costs: fetching data, de-
compressing data, processing (selections, grouping/aggregation),
and outputting the results. From the figure we can see that process-
ing costs dominate in query Q1 while outputting costs dominate in
query Q14. However, fetching and decompression are at the ma-
jor costs for Q6 and Q12. To contrast the effect of compression,
Figure 9(b) shows the cost breakdown for uncompressed data. We
can see that there are no decompression costs now, however the
fetching costs go up significantly and dominate most queries.

Fetch Decompress Processing Output Rest Total Leaf Overall 3.Overall
Q1
Q6
Q12
Q14

6.600 4.480 12.353 0.001 23.434 48.839585487 146.51875646
5.547 3.486 2.482 0 11.515 27.51738229 82.552146869
3.948 4.190 2.614 8.587 19.339 78.384223458 235.15267037
6.356 3.085 1.692 18.703 29.836 55.935707906 167.80712372

Fetch Decompress Processing Output Rest Total Leaf Overall 3.Overall
Q1
Q6
Q12
Q14

20.520 0 12.656 0.001 0 33.177 19.293982609 48.839585487 146.51875646
15.672 0 2.459 0 0 18.131 8.6532381493 27.51738229 82.552146869
20.330 0 2.587 8.392 0 31.309 16.504629093 78.384223458 235.15267037
13.885 0 1.637 18.453 0 33.975 25.592795096 55.935707906 167.80712372

0

10

20

30

40

50

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Fetch Decompress
Process Output

0

10

20

30

40

50

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Fetch Decompress
Process Output

Fetch Decompress Processing Output Rest Total Leaf Overall 3.Overall
Q1

Q6

Q12

Q14

9.470 10.003 11.210 0.011 30.694 48.839585487 146.51875646

7.572 6.866 1.310 0.012 15.76 27.51738229 82.552146869

6.732 9.658 2.093 6.335 24.818 78.384223458 235.15267037

18.565 4.970 1.383 19.638 44.556 55.935707906 167.80712372

0

10

20

30

40

50

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Fetch Decompress
Process Output

(a) With compression

Fetch Decompress Processing Output Rest Total Leaf Overall 3.Overall
Q1
Q6
Q12
Q14

6.600 4.480 12.353 0.001 23.434 48.839585487 146.51875646
5.547 3.486 2.482 0 11.515 27.51738229 82.552146869
3.948 4.190 2.614 8.587 19.339 78.384223458 235.15267037
6.356 3.085 1.692 18.703 29.836 55.935707906 167.80712372

Fetch Decompress Processing Output Rest Total Leaf Overall 3.Overall
Q1
Q6
Q12
Q14

20.520 0 12.656 0.001 0 33.177 19.293982609 48.839585487 146.51875646
15.672 0 2.459 0 0 18.131 8.6532381493 27.51738229 82.552146869
20.330 0 2.587 8.392 0 31.309 16.504629093 78.384223458 235.15267037
13.885 0 1.637 18.453 0 33.975 25.592795096 55.935707906 167.80712372

0

10

20

30

40

50

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Fetch Decompress
Process Output

0

10

20

30

40

50

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Fetch Decompress
Process Output

Fetch Decompress Processing Output Rest Total Leaf Overall 3.Overall
Q1

Q6

Q12

Q14

9.470 10.003 11.210 0.011 30.694 48.839585487 146.51875646

7.572 6.866 1.310 0.012 15.76 27.51738229 82.552146869

6.732 9.658 2.093 6.335 24.818 78.384223458 235.15267037

18.565 4.970 1.383 19.638 44.556 55.935707906 167.80712372

0

10

20

30

40

50

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Fetch Decompress
Process Output

(b) Without compression

Figure 9: Query cost breakdown (in seconds) for Trojan
Columns over TPC-H query set 1.

E. STORED PROCEDURES
As discussed in Section A, we considered two interfaces to

implement Trojan Columns in DBMS-X. In the experiments, we
showed results from the Table UDF Interface implementation in
DBMS-X. This was because the UDFs thus created can be eas-
ily nested in SQL queries without much changed (we just need to
change the FROM clause). In contrast, the Call Level Interface
(CLI) in DBMS-X needs a CALL statement to invoke the UDF and
store the results in a temporary table. This temporary table must be
then used by the remainder of the query. For the sake of complete-
ness, we also present the results from the CLI implementation of
Trojan Columns.

Figure 10 shows the runtimes of Trojan Columns using stored
procedures (SP) for TPC-H query set 1. We can see that except for
query Q14, Trojan Columns using stored procedures are very close
to those Trojan Columns using UDFs. Stored procedures are slow
for Query Q14 because it produces a large number of output tuples.
Since stored procedures cannot return the results, they must write
these output tuples into another table.

Standard Row Trojan Columns Trojan Columns (SP)

Lineitem
Orders
Part
customer
partsupp
supplier
nation
region

771.41172 1451.3873 365.11702086
484.01618 369.97302
100.43459 59.400493
89.459029 ***
401.02168 ***
10.144428 ***
5.5904746 ***
5.8037666 ***

0

375

750

1125

1500

Lineitem Orders Part

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

Standard Row Trojan Columns Trojan Columns (SP) Standard Row Trojan Columns Trojan Columns (O) Trojan Columns (SP) Factor Factor

Q1
Q6
Q12
Q14
Q3
Q5
Q10
Q19
Q2
Q4
Q8
Q15
Q17

76.730296 19.293983 24.208052774 230.19089 57.881948 72.62415832 3.977 3.17
77.589034 8.6532381 11.235220175 232.7671 25.959714 33.70566052 8.966 6.906
92.486038 37.331905 40.598335758 277.45811 111.99572 121.7950073 2.477 2.278
81.207649 30.788114 59.597473787 243.62295 92.364343 178.7924214 2.638 1.363
111.88261 809.38127 335.64782 2428.1438 0.138
99.729039 169.34457 299.18712 508.0337 0.589
110.93664 119.46429 332.80993 358.39288 0.929
79.140857 43.115296 237.42257 129.34589 227.3616356 1.836
0 0
110.75535 0 332.26604
97.387131 97.664365 292.16139 292.9931 0.997
80.508382 66.914039 241.52515 200.74212 1.203
0 0
0 0

0

25

50

75

100

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

0

35

70

105

140

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns (UDF)
Trojan Columns (SP)

Figure 10: Query times (in seconds) with stored procedures.

F. C-TABLE EVALUATION
In order to investigate C-Table in more detail, we ran some

micro-benchmarks on them. We take three synthetic datasets. Each
dataset contains integer attributes with the same cardinality (10,
100, and 1000 respectively). For each dataset, we create C-Tables
over its attributes and vary the number of referenced attributes.

Figure 7 shows the results. We can see from the figure that for
lower cardinalities C-Tables work very well compared to standard
row. For instance, for cardinality 10, C-Tables are better than row
for up to 6 referenced attributes. However, for higher cardinalities
e.g. 1000, C-Tables do not work so well. This is because the tuple
reconstruction costs overshadow the benefits of RLE encoding in
C-Tables.

* Nicolas Bruno. Teaching an Old Elephant New Tricks. CIDR 2009

*C-Tables

C-Tables

23

Query Processor

Relations

Physical Representation

File 1 File 2 File 3 File n....

Application
User

Database

*

* Nicolas Bruno. Teaching an Old Elephant New Tricks. CIDR 2009

Column Index

24

Query Processor

Relations

Physical Representation

File 1 File 2 File 3 File n....

Application
User

Database

* P. Larson et. al. SQL Server Column Store Indexes. SIGMOD 2011

*

25

product, is it possible to introduce column store technology in it to
support analytical workloads efficiently? All this without having
access to the source code of the database product.

1.3 Our Idea
Our idea is to use User Defined Functions (UDFs) as an access

layer for data storage and retrieval. To do so, we create and install
certain UDFs within the database system and exploit them when-
ever we need to store or access data. The data is actually stored
in a compressed column-oriented fashion on disk. But the UDFs
translate it into the row layout for the query processor. This means
we trick the database into believing that the data is still stored in
row layout, even though it is not. Finally, note that our approach is
very different from the two extremes of data stores: either having a
different product for different stores or doing deep seated changes
in the database product. We do neither of these, but still gain per-
formance significantly. The major benefits of our approach are as
follows:

(1.) Injects column store functionality into existing closed source
database products e.g. IBM DB2, Oracle.
(2.) Logical view of data remains unchanged for the outside user;
instead, the changes are transparently injected inside the DBMS.
(3.) Does not invade or make heavy changes in the system; rather,
uses lightweight UDFs to store and access the data.
(4.) Just fixes the storage layer (row, column, or even column-
grouped layouts) by inserting appropriate UDFs.
(5.) Reuses the query optimizer (at least partially) and therefore no
need to re-implement state-of-the-art database technologies.
(6.) User queries remain (almost) unchanged.

1.4 Contributions
Our main contributions are as follows:

(1.) We present Trojan Columns: a radically different technique
to inject column store functionality into a given database system.
Trojan Columns masks the database storage layer and translates
back and forth from users’ row-view to the physical column-view
of data. All the while, users’ view remains unchanged. (Section 2)
(2.) We present techniques to query Trojan Columns. We show
how to push down one or more operators in the query tree to the
UDFs. We describe how to rewrite the user queries in order to use
the UDFs for data access. (Section 3)
(3.) We present experimental results from DBMS-X over TPC-H
datasets. We evaluate Trojan Columns over there different bench-
marks including (1) unmodified TPC-H queries, (2) simplified
TPC-H queries as proposed in the C-Store paper [8], as well as
(3) micro-benchmarks to investigate the pros and cons of Trojan
Columns by varying several query parameters. (Section 4)

2. TROJAN COLUMNS
In this section, we present Trojan Columns: a novel way of in-

jecting column store functionality in a given row-oriented database
system. Trojan Columns uses table returning UDFs2 to translate the
user’s logical row view to the physical column view on disk. The
core philosophy of Trojan Columns is very similar to Trojan tech-
niques in Hadoop++ [4, 6]: affect the changes from inside without
changing the source code of the system. In the following, we de-
scribe how to create Trojan Columns.
2Typically database systems support three kinds of UDFs based on
their return types: (i) scalar value returning UDFs, (ii) row return-
ing UDFs, and (iii) table (of rows) returning UDFs.

Trojan Columns maps logical relations to physical tables as
follows. First, we horizontally partition a given relation T into
segments. Then, we store each attribute in a given segment
as a separate BLOB (binary large object) in a physical table
T_trojan(segment_ID, attribute_ID, blob_data). To illustrate, con-
sider the following entries of a Customer relation.

Customer
name phone market_segment
smith 2134 automobile
john 3425 household
kim 6756 furniture
joe 9878 building
mark 4312 building
steve 2435 automobile
jim 5766 household
ian 8789 household

Assuming a segment size of 4, i.e. 4 entries of each column are
mapped to a different row, Trojan Columns converts this to the fol-
lowing Customer_trojan table:

Customer_trojan
segment_ID attribute_ID blob_data

1 name smith, john, kim, joe
1 phone 2134, 3425, 6756, 9878
1 market_segment automobile, household, furniture, building
2 name mark, steve, jim, ian
2 phone 4312, 2435, 5766, 8789
2 market_segment building, automobile, household, household

We store each entry in the blob_data column of the above table as
a BLOB, thus mimicking a column-oriented storage. Experimen-
tally, we found bigger segment sizes, e.g. ⇠10M, to be more suit-
able. The data storage idea for Trojan Columns is inspired by SQL
Server Column Indexes [7]. However, in practice, Trojan Columns
is radically different from Column Indexes in several ways.

First, Trojan Columns uses UDFs to store the blob data instead
of native SQL support in case of Column Indexes. This not only
makes Trojan Columns plug-and-play, but also allows us to cus-
tomize the blob storage to user applications. For example, we might
prefer light weight compression (e.g. RLE) for read-intensive ap-
plication and higher compression ratio (e.g. Huffman) for archive
applications. Additionally, we could simply let the database sys-
tem apply the default compression method for blobs, e.g. TOAST
compression in PostgreSQL. Likewise, we might choose to sort the
data within or even across the blobs in any way, e.g. sort on attribute
IDs. Essentially, we have full control and flexibility to decide how
the blobs must reside on disk.

Second, Trojan Columns is quite different from SQL Server Col-
umn Indexes not only in data storage, but also in data access. Sim-
ilar to data storage, the access method is plugged into a given
database, instead of making deep changes in the data access layer
itself. Again, based on user applications, we have full control to
decide how to access the data. For example, for an airline com-
pany, we may choose to look for all possible connections only for
premium customers.

Third, Trojan Columns uses standard database tables to store the
blob, instead of a new index type in case of Column Indexes. The
database uses its own physical storage mechanism to persist the
blob table on disk. In other words, Trojan Columns simply pro-
vides a mechanism to decouple logical representation of relations
from their physical implementation, a.k.a physical data indepen-
dence, which, unfortunately, still remains a myth in several mod-
ern databases [10]. Finally, with Trojan Columns the database sys-
tem is entirely agnostic of the column store functionality injected
within, i.e. no new SQL keywords, or data types, or any entries
in the system catalog have to be added. The consequence is that
Trojan Columns is database product independent, i.e. they can be
plugged into any existing database product.

2

product, is it possible to introduce column store technology in it to
support analytical workloads efficiently? All this without having
access to the source code of the database product.

1.3 Our Idea
Our idea is to use User Defined Functions (UDFs) as an access

layer for data storage and retrieval. To do so, we create and install
certain UDFs within the database system and exploit them when-
ever we need to store or access data. The data is actually stored
in a compressed column-oriented fashion on disk. But the UDFs
translate it into the row layout for the query processor. This means
we trick the database into believing that the data is still stored in
row layout, even though it is not. Finally, note that our approach is
very different from the two extremes of data stores: either having a
different product for different stores or doing deep seated changes
in the database product. We do neither of these, but still gain per-
formance significantly. The major benefits of our approach are as
follows:

(1.) Injects column store functionality into existing closed source
database products e.g. IBM DB2, Oracle.
(2.) Logical view of data remains unchanged for the outside user;
instead, the changes are transparently injected inside the DBMS.
(3.) Does not invade or make heavy changes in the system; rather,
uses lightweight UDFs to store and access the data.
(4.) Just fixes the storage layer (row, column, or even column-
grouped layouts) by inserting appropriate UDFs.
(5.) Reuses the query optimizer (at least partially) and therefore no
need to re-implement state-of-the-art database technologies.
(6.) User queries remain (almost) unchanged.

1.4 Contributions
Our main contributions are as follows:

(1.) We present Trojan Columns: a radically different technique
to inject column store functionality into a given database system.
Trojan Columns masks the database storage layer and translates
back and forth from users’ row-view to the physical column-view
of data. All the while, users’ view remains unchanged. (Section 2)
(2.) We present techniques to query Trojan Columns. We show
how to push down one or more operators in the query tree to the
UDFs. We describe how to rewrite the user queries in order to use
the UDFs for data access. (Section 3)
(3.) We present experimental results from DBMS-X over TPC-H
datasets. We evaluate Trojan Columns over there different bench-
marks including (1) unmodified TPC-H queries, (2) simplified
TPC-H queries as proposed in the C-Store paper [8], as well as
(3) micro-benchmarks to investigate the pros and cons of Trojan
Columns by varying several query parameters. (Section 4)

2. TROJAN COLUMNS
In this section, we present Trojan Columns: a novel way of in-

jecting column store functionality in a given row-oriented database
system. Trojan Columns uses table returning UDFs2 to translate the
user’s logical row view to the physical column view on disk. The
core philosophy of Trojan Columns is very similar to Trojan tech-
niques in Hadoop++ [4, 6]: affect the changes from inside without
changing the source code of the system. In the following, we de-
scribe how to create Trojan Columns.
2Typically database systems support three kinds of UDFs based on
their return types: (i) scalar value returning UDFs, (ii) row return-
ing UDFs, and (iii) table (of rows) returning UDFs.

Trojan Columns maps logical relations to physical tables as
follows. First, we horizontally partition a given relation T into
segments. Then, we store each attribute in a given segment
as a separate BLOB (binary large object) in a physical table
T_trojan(segment_ID, attribute_ID, blob_data). To illustrate, con-
sider the following entries of a Customer relation.

Customer
name phone market_segment
smith 2134 automobile
john 3425 household
kim 6756 furniture
joe 9878 building
mark 4312 building
steve 2435 automobile
jim 5766 household
ian 8789 household

Assuming a segment size of 4, i.e. 4 entries of each column are
mapped to a different row, Trojan Columns converts this to the fol-
lowing Customer_trojan table:

Customer_trojan
segment_ID attribute_ID blob_data

1 name smith, john, kim, joe
1 phone 2134, 3425, 6756, 9878
1 market_segment automobile, household, furniture, building
2 name mark, steve, jim, ian
2 phone 4312, 2435, 5766, 8789
2 market_segment building, automobile, household, household

We store each entry in the blob_data column of the above table as
a BLOB, thus mimicking a column-oriented storage. Experimen-
tally, we found bigger segment sizes, e.g. ⇠10M, to be more suit-
able. The data storage idea for Trojan Columns is inspired by SQL
Server Column Indexes [7]. However, in practice, Trojan Columns
is radically different from Column Indexes in several ways.

First, Trojan Columns uses UDFs to store the blob data instead
of native SQL support in case of Column Indexes. This not only
makes Trojan Columns plug-and-play, but also allows us to cus-
tomize the blob storage to user applications. For example, we might
prefer light weight compression (e.g. RLE) for read-intensive ap-
plication and higher compression ratio (e.g. Huffman) for archive
applications. Additionally, we could simply let the database sys-
tem apply the default compression method for blobs, e.g. TOAST
compression in PostgreSQL. Likewise, we might choose to sort the
data within or even across the blobs in any way, e.g. sort on attribute
IDs. Essentially, we have full control and flexibility to decide how
the blobs must reside on disk.

Second, Trojan Columns is quite different from SQL Server Col-
umn Indexes not only in data storage, but also in data access. Sim-
ilar to data storage, the access method is plugged into a given
database, instead of making deep changes in the data access layer
itself. Again, based on user applications, we have full control to
decide how to access the data. For example, for an airline com-
pany, we may choose to look for all possible connections only for
premium customers.

Third, Trojan Columns uses standard database tables to store the
blob, instead of a new index type in case of Column Indexes. The
database uses its own physical storage mechanism to persist the
blob table on disk. In other words, Trojan Columns simply pro-
vides a mechanism to decouple logical representation of relations
from their physical implementation, a.k.a physical data indepen-
dence, which, unfortunately, still remains a myth in several mod-
ern databases [10]. Finally, with Trojan Columns the database sys-
tem is entirely agnostic of the column store functionality injected
within, i.e. no new SQL keywords, or data types, or any entries
in the system catalog have to be added. The consequence is that
Trojan Columns is database product independent, i.e. they can be
plugged into any existing database product.

2

Relation

Physical Table

Column Index

* P. Larson et. al. SQL Server Column Store Indexes. SIGMOD 2011

*

segment size = 4

26

product, is it possible to introduce column store technology in it to
support analytical workloads efficiently? All this without having
access to the source code of the database product.

1.3 Our Idea
Our idea is to use User Defined Functions (UDFs) as an access

layer for data storage and retrieval. To do so, we create and install
certain UDFs within the database system and exploit them when-
ever we need to store or access data. The data is actually stored
in a compressed column-oriented fashion on disk. But the UDFs
translate it into the row layout for the query processor. This means
we trick the database into believing that the data is still stored in
row layout, even though it is not. Finally, note that our approach is
very different from the two extremes of data stores: either having a
different product for different stores or doing deep seated changes
in the database product. We do neither of these, but still gain per-
formance significantly. The major benefits of our approach are as
follows:

(1.) Injects column store functionality into existing closed source
database products e.g. IBM DB2, Oracle.
(2.) Logical view of data remains unchanged for the outside user;
instead, the changes are transparently injected inside the DBMS.
(3.) Does not invade or make heavy changes in the system; rather,
uses lightweight UDFs to store and access the data.
(4.) Just fixes the storage layer (row, column, or even column-
grouped layouts) by inserting appropriate UDFs.
(5.) Reuses the query optimizer (at least partially) and therefore no
need to re-implement state-of-the-art database technologies.
(6.) User queries remain (almost) unchanged.

1.4 Contributions
Our main contributions are as follows:

(1.) We present Trojan Columns: a radically different technique
to inject column store functionality into a given database system.
Trojan Columns masks the database storage layer and translates
back and forth from users’ row-view to the physical column-view
of data. All the while, users’ view remains unchanged. (Section 2)
(2.) We present techniques to query Trojan Columns. We show
how to push down one or more operators in the query tree to the
UDFs. We describe how to rewrite the user queries in order to use
the UDFs for data access. (Section 3)
(3.) We present experimental results from DBMS-X over TPC-H
datasets. We evaluate Trojan Columns over there different bench-
marks including (1) unmodified TPC-H queries, (2) simplified
TPC-H queries as proposed in the C-Store paper [8], as well as
(3) micro-benchmarks to investigate the pros and cons of Trojan
Columns by varying several query parameters. (Section 4)

2. TROJAN COLUMNS
In this section, we present Trojan Columns: a novel way of in-

jecting column store functionality in a given row-oriented database
system. Trojan Columns uses table returning UDFs2 to translate the
user’s logical row view to the physical column view on disk. The
core philosophy of Trojan Columns is very similar to Trojan tech-
niques in Hadoop++ [4, 6]: affect the changes from inside without
changing the source code of the system. In the following, we de-
scribe how to create Trojan Columns.
2Typically database systems support three kinds of UDFs based on
their return types: (i) scalar value returning UDFs, (ii) row return-
ing UDFs, and (iii) table (of rows) returning UDFs.

Trojan Columns maps logical relations to physical tables as
follows. First, we horizontally partition a given relation T into
segments. Then, we store each attribute in a given segment
as a separate BLOB (binary large object) in a physical table
T_trojan(segment_ID, attribute_ID, blob_data). To illustrate, con-
sider the following entries of a Customer relation.

Customer
name phone market_segment
smith 2134 automobile
john 3425 household
kim 6756 furniture
joe 9878 building
mark 4312 building
steve 2435 automobile
jim 5766 household
ian 8789 household

Assuming a segment size of 4, i.e. 4 entries of each column are
mapped to a different row, Trojan Columns converts this to the fol-
lowing Customer_trojan table:

Customer_trojan
segment_ID attribute_ID blob_data

1 name smith, john, kim, joe
1 phone 2134, 3425, 6756, 9878
1 market_segment automobile, household, furniture, building
2 name mark, steve, jim, ian
2 phone 4312, 2435, 5766, 8789
2 market_segment building, automobile, household, household

We store each entry in the blob_data column of the above table as
a BLOB, thus mimicking a column-oriented storage. Experimen-
tally, we found bigger segment sizes, e.g. ⇠10M, to be more suit-
able. The data storage idea for Trojan Columns is inspired by SQL
Server Column Indexes [7]. However, in practice, Trojan Columns
is radically different from Column Indexes in several ways.

First, Trojan Columns uses UDFs to store the blob data instead
of native SQL support in case of Column Indexes. This not only
makes Trojan Columns plug-and-play, but also allows us to cus-
tomize the blob storage to user applications. For example, we might
prefer light weight compression (e.g. RLE) for read-intensive ap-
plication and higher compression ratio (e.g. Huffman) for archive
applications. Additionally, we could simply let the database sys-
tem apply the default compression method for blobs, e.g. TOAST
compression in PostgreSQL. Likewise, we might choose to sort the
data within or even across the blobs in any way, e.g. sort on attribute
IDs. Essentially, we have full control and flexibility to decide how
the blobs must reside on disk.

Second, Trojan Columns is quite different from SQL Server Col-
umn Indexes not only in data storage, but also in data access. Sim-
ilar to data storage, the access method is plugged into a given
database, instead of making deep changes in the data access layer
itself. Again, based on user applications, we have full control to
decide how to access the data. For example, for an airline com-
pany, we may choose to look for all possible connections only for
premium customers.

Third, Trojan Columns uses standard database tables to store the
blob, instead of a new index type in case of Column Indexes. The
database uses its own physical storage mechanism to persist the
blob table on disk. In other words, Trojan Columns simply pro-
vides a mechanism to decouple logical representation of relations
from their physical implementation, a.k.a physical data indepen-
dence, which, unfortunately, still remains a myth in several mod-
ern databases [10]. Finally, with Trojan Columns the database sys-
tem is entirely agnostic of the column store functionality injected
within, i.e. no new SQL keywords, or data types, or any entries
in the system catalog have to be added. The consequence is that
Trojan Columns is database product independent, i.e. they can be
plugged into any existing database product.

2

product, is it possible to introduce column store technology in it to
support analytical workloads efficiently? All this without having
access to the source code of the database product.

1.3 Our Idea
Our idea is to use User Defined Functions (UDFs) as an access

layer for data storage and retrieval. To do so, we create and install
certain UDFs within the database system and exploit them when-
ever we need to store or access data. The data is actually stored
in a compressed column-oriented fashion on disk. But the UDFs
translate it into the row layout for the query processor. This means
we trick the database into believing that the data is still stored in
row layout, even though it is not. Finally, note that our approach is
very different from the two extremes of data stores: either having a
different product for different stores or doing deep seated changes
in the database product. We do neither of these, but still gain per-
formance significantly. The major benefits of our approach are as
follows:

(1.) Injects column store functionality into existing closed source
database products e.g. IBM DB2, Oracle.
(2.) Logical view of data remains unchanged for the outside user;
instead, the changes are transparently injected inside the DBMS.
(3.) Does not invade or make heavy changes in the system; rather,
uses lightweight UDFs to store and access the data.
(4.) Just fixes the storage layer (row, column, or even column-
grouped layouts) by inserting appropriate UDFs.
(5.) Reuses the query optimizer (at least partially) and therefore no
need to re-implement state-of-the-art database technologies.
(6.) User queries remain (almost) unchanged.

1.4 Contributions
Our main contributions are as follows:

(1.) We present Trojan Columns: a radically different technique
to inject column store functionality into a given database system.
Trojan Columns masks the database storage layer and translates
back and forth from users’ row-view to the physical column-view
of data. All the while, users’ view remains unchanged. (Section 2)
(2.) We present techniques to query Trojan Columns. We show
how to push down one or more operators in the query tree to the
UDFs. We describe how to rewrite the user queries in order to use
the UDFs for data access. (Section 3)
(3.) We present experimental results from DBMS-X over TPC-H
datasets. We evaluate Trojan Columns over there different bench-
marks including (1) unmodified TPC-H queries, (2) simplified
TPC-H queries as proposed in the C-Store paper [8], as well as
(3) micro-benchmarks to investigate the pros and cons of Trojan
Columns by varying several query parameters. (Section 4)

2. TROJAN COLUMNS
In this section, we present Trojan Columns: a novel way of in-

jecting column store functionality in a given row-oriented database
system. Trojan Columns uses table returning UDFs2 to translate the
user’s logical row view to the physical column view on disk. The
core philosophy of Trojan Columns is very similar to Trojan tech-
niques in Hadoop++ [4, 6]: affect the changes from inside without
changing the source code of the system. In the following, we de-
scribe how to create Trojan Columns.
2Typically database systems support three kinds of UDFs based on
their return types: (i) scalar value returning UDFs, (ii) row return-
ing UDFs, and (iii) table (of rows) returning UDFs.

Trojan Columns maps logical relations to physical tables as
follows. First, we horizontally partition a given relation T into
segments. Then, we store each attribute in a given segment
as a separate BLOB (binary large object) in a physical table
T_trojan(segment_ID, attribute_ID, blob_data). To illustrate, con-
sider the following entries of a Customer relation.

Customer
name phone market_segment
smith 2134 automobile
john 3425 household
kim 6756 furniture
joe 9878 building
mark 4312 building
steve 2435 automobile
jim 5766 household
ian 8789 household

Assuming a segment size of 4, i.e. 4 entries of each column are
mapped to a different row, Trojan Columns converts this to the fol-
lowing Customer_trojan table:

Customer_trojan
segment_ID attribute_ID blob_data

1 name smith, john, kim, joe
1 phone 2134, 3425, 6756, 9878
1 market_segment automobile, household, furniture, building
2 name mark, steve, jim, ian
2 phone 4312, 2435, 5766, 8789
2 market_segment building, automobile, household, household

We store each entry in the blob_data column of the above table as
a BLOB, thus mimicking a column-oriented storage. Experimen-
tally, we found bigger segment sizes, e.g. ⇠10M, to be more suit-
able. The data storage idea for Trojan Columns is inspired by SQL
Server Column Indexes [7]. However, in practice, Trojan Columns
is radically different from Column Indexes in several ways.

First, Trojan Columns uses UDFs to store the blob data instead
of native SQL support in case of Column Indexes. This not only
makes Trojan Columns plug-and-play, but also allows us to cus-
tomize the blob storage to user applications. For example, we might
prefer light weight compression (e.g. RLE) for read-intensive ap-
plication and higher compression ratio (e.g. Huffman) for archive
applications. Additionally, we could simply let the database sys-
tem apply the default compression method for blobs, e.g. TOAST
compression in PostgreSQL. Likewise, we might choose to sort the
data within or even across the blobs in any way, e.g. sort on attribute
IDs. Essentially, we have full control and flexibility to decide how
the blobs must reside on disk.

Second, Trojan Columns is quite different from SQL Server Col-
umn Indexes not only in data storage, but also in data access. Sim-
ilar to data storage, the access method is plugged into a given
database, instead of making deep changes in the data access layer
itself. Again, based on user applications, we have full control to
decide how to access the data. For example, for an airline com-
pany, we may choose to look for all possible connections only for
premium customers.

Third, Trojan Columns uses standard database tables to store the
blob, instead of a new index type in case of Column Indexes. The
database uses its own physical storage mechanism to persist the
blob table on disk. In other words, Trojan Columns simply pro-
vides a mechanism to decouple logical representation of relations
from their physical implementation, a.k.a physical data indepen-
dence, which, unfortunately, still remains a myth in several mod-
ern databases [10]. Finally, with Trojan Columns the database sys-
tem is entirely agnostic of the column store functionality injected
within, i.e. no new SQL keywords, or data types, or any entries
in the system catalog have to be added. The consequence is that
Trojan Columns is database product independent, i.e. they can be
plugged into any existing database product.

2

Relation

Physical Table

Column Index

* P. Larson et. al. SQL Server Column Store Indexes. SIGMOD 2011

*

segment size = 4

27

product, is it possible to introduce column store technology in it to
support analytical workloads efficiently? All this without having
access to the source code of the database product.

1.3 Our Idea
Our idea is to use User Defined Functions (UDFs) as an access

layer for data storage and retrieval. To do so, we create and install
certain UDFs within the database system and exploit them when-
ever we need to store or access data. The data is actually stored
in a compressed column-oriented fashion on disk. But the UDFs
translate it into the row layout for the query processor. This means
we trick the database into believing that the data is still stored in
row layout, even though it is not. Finally, note that our approach is
very different from the two extremes of data stores: either having a
different product for different stores or doing deep seated changes
in the database product. We do neither of these, but still gain per-
formance significantly. The major benefits of our approach are as
follows:

(1.) Injects column store functionality into existing closed source
database products e.g. IBM DB2, Oracle.
(2.) Logical view of data remains unchanged for the outside user;
instead, the changes are transparently injected inside the DBMS.
(3.) Does not invade or make heavy changes in the system; rather,
uses lightweight UDFs to store and access the data.
(4.) Just fixes the storage layer (row, column, or even column-
grouped layouts) by inserting appropriate UDFs.
(5.) Reuses the query optimizer (at least partially) and therefore no
need to re-implement state-of-the-art database technologies.
(6.) User queries remain (almost) unchanged.

1.4 Contributions
Our main contributions are as follows:

(1.) We present Trojan Columns: a radically different technique
to inject column store functionality into a given database system.
Trojan Columns masks the database storage layer and translates
back and forth from users’ row-view to the physical column-view
of data. All the while, users’ view remains unchanged. (Section 2)
(2.) We present techniques to query Trojan Columns. We show
how to push down one or more operators in the query tree to the
UDFs. We describe how to rewrite the user queries in order to use
the UDFs for data access. (Section 3)
(3.) We present experimental results from DBMS-X over TPC-H
datasets. We evaluate Trojan Columns over there different bench-
marks including (1) unmodified TPC-H queries, (2) simplified
TPC-H queries as proposed in the C-Store paper [8], as well as
(3) micro-benchmarks to investigate the pros and cons of Trojan
Columns by varying several query parameters. (Section 4)

2. TROJAN COLUMNS
In this section, we present Trojan Columns: a novel way of in-

jecting column store functionality in a given row-oriented database
system. Trojan Columns uses table returning UDFs2 to translate the
user’s logical row view to the physical column view on disk. The
core philosophy of Trojan Columns is very similar to Trojan tech-
niques in Hadoop++ [4, 6]: affect the changes from inside without
changing the source code of the system. In the following, we de-
scribe how to create Trojan Columns.
2Typically database systems support three kinds of UDFs based on
their return types: (i) scalar value returning UDFs, (ii) row return-
ing UDFs, and (iii) table (of rows) returning UDFs.

Trojan Columns maps logical relations to physical tables as
follows. First, we horizontally partition a given relation T into
segments. Then, we store each attribute in a given segment
as a separate BLOB (binary large object) in a physical table
T_trojan(segment_ID, attribute_ID, blob_data). To illustrate, con-
sider the following entries of a Customer relation.

Customer
name phone market_segment
smith 2134 automobile
john 3425 household
kim 6756 furniture
joe 9878 building
mark 4312 building
steve 2435 automobile
jim 5766 household
ian 8789 household

Assuming a segment size of 4, i.e. 4 entries of each column are
mapped to a different row, Trojan Columns converts this to the fol-
lowing Customer_trojan table:

Customer_trojan
segment_ID attribute_ID blob_data

1 name smith, john, kim, joe
1 phone 2134, 3425, 6756, 9878
1 market_segment automobile, household, furniture, building
2 name mark, steve, jim, ian
2 phone 4312, 2435, 5766, 8789
2 market_segment building, automobile, household, household

We store each entry in the blob_data column of the above table as
a BLOB, thus mimicking a column-oriented storage. Experimen-
tally, we found bigger segment sizes, e.g. ⇠10M, to be more suit-
able. The data storage idea for Trojan Columns is inspired by SQL
Server Column Indexes [7]. However, in practice, Trojan Columns
is radically different from Column Indexes in several ways.

First, Trojan Columns uses UDFs to store the blob data instead
of native SQL support in case of Column Indexes. This not only
makes Trojan Columns plug-and-play, but also allows us to cus-
tomize the blob storage to user applications. For example, we might
prefer light weight compression (e.g. RLE) for read-intensive ap-
plication and higher compression ratio (e.g. Huffman) for archive
applications. Additionally, we could simply let the database sys-
tem apply the default compression method for blobs, e.g. TOAST
compression in PostgreSQL. Likewise, we might choose to sort the
data within or even across the blobs in any way, e.g. sort on attribute
IDs. Essentially, we have full control and flexibility to decide how
the blobs must reside on disk.

Second, Trojan Columns is quite different from SQL Server Col-
umn Indexes not only in data storage, but also in data access. Sim-
ilar to data storage, the access method is plugged into a given
database, instead of making deep changes in the data access layer
itself. Again, based on user applications, we have full control to
decide how to access the data. For example, for an airline com-
pany, we may choose to look for all possible connections only for
premium customers.

Third, Trojan Columns uses standard database tables to store the
blob, instead of a new index type in case of Column Indexes. The
database uses its own physical storage mechanism to persist the
blob table on disk. In other words, Trojan Columns simply pro-
vides a mechanism to decouple logical representation of relations
from their physical implementation, a.k.a physical data indepen-
dence, which, unfortunately, still remains a myth in several mod-
ern databases [10]. Finally, with Trojan Columns the database sys-
tem is entirely agnostic of the column store functionality injected
within, i.e. no new SQL keywords, or data types, or any entries
in the system catalog have to be added. The consequence is that
Trojan Columns is database product independent, i.e. they can be
plugged into any existing database product.

2

product, is it possible to introduce column store technology in it to
support analytical workloads efficiently? All this without having
access to the source code of the database product.

1.3 Our Idea
Our idea is to use User Defined Functions (UDFs) as an access

layer for data storage and retrieval. To do so, we create and install
certain UDFs within the database system and exploit them when-
ever we need to store or access data. The data is actually stored
in a compressed column-oriented fashion on disk. But the UDFs
translate it into the row layout for the query processor. This means
we trick the database into believing that the data is still stored in
row layout, even though it is not. Finally, note that our approach is
very different from the two extremes of data stores: either having a
different product for different stores or doing deep seated changes
in the database product. We do neither of these, but still gain per-
formance significantly. The major benefits of our approach are as
follows:

(1.) Injects column store functionality into existing closed source
database products e.g. IBM DB2, Oracle.
(2.) Logical view of data remains unchanged for the outside user;
instead, the changes are transparently injected inside the DBMS.
(3.) Does not invade or make heavy changes in the system; rather,
uses lightweight UDFs to store and access the data.
(4.) Just fixes the storage layer (row, column, or even column-
grouped layouts) by inserting appropriate UDFs.
(5.) Reuses the query optimizer (at least partially) and therefore no
need to re-implement state-of-the-art database technologies.
(6.) User queries remain (almost) unchanged.

1.4 Contributions
Our main contributions are as follows:

(1.) We present Trojan Columns: a radically different technique
to inject column store functionality into a given database system.
Trojan Columns masks the database storage layer and translates
back and forth from users’ row-view to the physical column-view
of data. All the while, users’ view remains unchanged. (Section 2)
(2.) We present techniques to query Trojan Columns. We show
how to push down one or more operators in the query tree to the
UDFs. We describe how to rewrite the user queries in order to use
the UDFs for data access. (Section 3)
(3.) We present experimental results from DBMS-X over TPC-H
datasets. We evaluate Trojan Columns over there different bench-
marks including (1) unmodified TPC-H queries, (2) simplified
TPC-H queries as proposed in the C-Store paper [8], as well as
(3) micro-benchmarks to investigate the pros and cons of Trojan
Columns by varying several query parameters. (Section 4)

2. TROJAN COLUMNS
In this section, we present Trojan Columns: a novel way of in-

jecting column store functionality in a given row-oriented database
system. Trojan Columns uses table returning UDFs2 to translate the
user’s logical row view to the physical column view on disk. The
core philosophy of Trojan Columns is very similar to Trojan tech-
niques in Hadoop++ [4, 6]: affect the changes from inside without
changing the source code of the system. In the following, we de-
scribe how to create Trojan Columns.
2Typically database systems support three kinds of UDFs based on
their return types: (i) scalar value returning UDFs, (ii) row return-
ing UDFs, and (iii) table (of rows) returning UDFs.

Trojan Columns maps logical relations to physical tables as
follows. First, we horizontally partition a given relation T into
segments. Then, we store each attribute in a given segment
as a separate BLOB (binary large object) in a physical table
T_trojan(segment_ID, attribute_ID, blob_data). To illustrate, con-
sider the following entries of a Customer relation.

Customer
name phone market_segment
smith 2134 automobile
john 3425 household
kim 6756 furniture
joe 9878 building
mark 4312 building
steve 2435 automobile
jim 5766 household
ian 8789 household

Assuming a segment size of 4, i.e. 4 entries of each column are
mapped to a different row, Trojan Columns converts this to the fol-
lowing Customer_trojan table:

Customer_trojan
segment_ID attribute_ID blob_data

1 name smith, john, kim, joe
1 phone 2134, 3425, 6756, 9878
1 market_segment automobile, household, furniture, building
2 name mark, steve, jim, ian
2 phone 4312, 2435, 5766, 8789
2 market_segment building, automobile, household, household

We store each entry in the blob_data column of the above table as
a BLOB, thus mimicking a column-oriented storage. Experimen-
tally, we found bigger segment sizes, e.g. ⇠10M, to be more suit-
able. The data storage idea for Trojan Columns is inspired by SQL
Server Column Indexes [7]. However, in practice, Trojan Columns
is radically different from Column Indexes in several ways.

First, Trojan Columns uses UDFs to store the blob data instead
of native SQL support in case of Column Indexes. This not only
makes Trojan Columns plug-and-play, but also allows us to cus-
tomize the blob storage to user applications. For example, we might
prefer light weight compression (e.g. RLE) for read-intensive ap-
plication and higher compression ratio (e.g. Huffman) for archive
applications. Additionally, we could simply let the database sys-
tem apply the default compression method for blobs, e.g. TOAST
compression in PostgreSQL. Likewise, we might choose to sort the
data within or even across the blobs in any way, e.g. sort on attribute
IDs. Essentially, we have full control and flexibility to decide how
the blobs must reside on disk.

Second, Trojan Columns is quite different from SQL Server Col-
umn Indexes not only in data storage, but also in data access. Sim-
ilar to data storage, the access method is plugged into a given
database, instead of making deep changes in the data access layer
itself. Again, based on user applications, we have full control to
decide how to access the data. For example, for an airline com-
pany, we may choose to look for all possible connections only for
premium customers.

Third, Trojan Columns uses standard database tables to store the
blob, instead of a new index type in case of Column Indexes. The
database uses its own physical storage mechanism to persist the
blob table on disk. In other words, Trojan Columns simply pro-
vides a mechanism to decouple logical representation of relations
from their physical implementation, a.k.a physical data indepen-
dence, which, unfortunately, still remains a myth in several mod-
ern databases [10]. Finally, with Trojan Columns the database sys-
tem is entirely agnostic of the column store functionality injected
within, i.e. no new SQL keywords, or data types, or any entries
in the system catalog have to be added. The consequence is that
Trojan Columns is database product independent, i.e. they can be
plugged into any existing database product.

2

Relation

Physical Table

Column Index

* P. Larson et. al. SQL Server Column Store Indexes. SIGMOD 2011

*

segment size = 4

Column Index

28

Query Processor

Relations

Physical Representation

File 1 File 2 File 3 File n....

Application
User

Database

DEEP CHANGES !

*

* P. Larson et. al. SQL Server Column Store Indexes. SIGMOD 2011

Column Index

28

Query Processor

Relations

Physical Representation

File 1 File 2 File 3 File n....

Application
User

Database

LONG TIME !

*

* P. Larson et. al. SQL Server Column Store Indexes. SIGMOD 2011

Column Index

28

Query Processor

Relations

Physical Representation

File 1 File 2 File 3 File n....

Application
User

Database

SOURCE CODE !

*

* P. Larson et. al. SQL Server Column Store Indexes. SIGMOD 2011

Column Index

28

Query Processor

Relations

Physical Representation

File 1 File 2 File 3 File n....

Application
User

Database

*

* P. Larson et. al. SQL Server Column Store Indexes. SIGMOD 2011

What do we propose?

Trojan Columns

31

UDF Storage Layer

Query Processor

Relations

Physical Representation

File 1 File 2 File 3 File n....

Application
User

Database

32

product, is it possible to introduce column store technology in it to
support analytical workloads efficiently? All this without having
access to the source code of the database product.

1.3 Our Idea
Our idea is to use User Defined Functions (UDFs) as an access

layer for data storage and retrieval. To do so, we create and install
certain UDFs within the database system and exploit them when-
ever we need to store or access data. The data is actually stored
in a compressed column-oriented fashion on disk. But the UDFs
translate it into the row layout for the query processor. This means
we trick the database into believing that the data is still stored in
row layout, even though it is not. Finally, note that our approach is
very different from the two extremes of data stores: either having a
different product for different stores or doing deep seated changes
in the database product. We do neither of these, but still gain per-
formance significantly. The major benefits of our approach are as
follows:

(1.) Injects column store functionality into existing closed source
database products e.g. IBM DB2, Oracle.
(2.) Logical view of data remains unchanged for the outside user;
instead, the changes are transparently injected inside the DBMS.
(3.) Does not invade or make heavy changes in the system; rather,
uses lightweight UDFs to store and access the data.
(4.) Just fixes the storage layer (row, column, or even column-
grouped layouts) by inserting appropriate UDFs.
(5.) Reuses the query optimizer (at least partially) and therefore no
need to re-implement state-of-the-art database technologies.
(6.) User queries remain (almost) unchanged.

1.4 Contributions
Our main contributions are as follows:

(1.) We present Trojan Columns: a radically different technique
to inject column store functionality into a given database system.
Trojan Columns masks the database storage layer and translates
back and forth from users’ row-view to the physical column-view
of data. All the while, users’ view remains unchanged. (Section 2)
(2.) We present techniques to query Trojan Columns. We show
how to push down one or more operators in the query tree to the
UDFs. We describe how to rewrite the user queries in order to use
the UDFs for data access. (Section 3)
(3.) We present experimental results from DBMS-X over TPC-H
datasets. We evaluate Trojan Columns over there different bench-
marks including (1) unmodified TPC-H queries, (2) simplified
TPC-H queries as proposed in the C-Store paper [8], as well as
(3) micro-benchmarks to investigate the pros and cons of Trojan
Columns by varying several query parameters. (Section 4)

2. TROJAN COLUMNS
In this section, we present Trojan Columns: a novel way of in-

jecting column store functionality in a given row-oriented database
system. Trojan Columns uses table returning UDFs2 to translate the
user’s logical row view to the physical column view on disk. The
core philosophy of Trojan Columns is very similar to Trojan tech-
niques in Hadoop++ [4, 6]: affect the changes from inside without
changing the source code of the system. In the following, we de-
scribe how to create Trojan Columns.
2Typically database systems support three kinds of UDFs based on
their return types: (i) scalar value returning UDFs, (ii) row return-
ing UDFs, and (iii) table (of rows) returning UDFs.

Trojan Columns maps logical relations to physical tables as
follows. First, we horizontally partition a given relation T into
segments. Then, we store each attribute in a given segment
as a separate BLOB (binary large object) in a physical table
T_trojan(segment_ID, attribute_ID, blob_data). To illustrate, con-
sider the following entries of a Customer relation.

Customer
name phone market_segment
smith 2134 automobile
john 3425 household
kim 6756 furniture
joe 9878 building
mark 4312 building
steve 2435 automobile
jim 5766 household
ian 8789 household

Assuming a segment size of 4, i.e. 4 entries of each column are
mapped to a different row, Trojan Columns converts this to the fol-
lowing Customer_trojan table:

Customer_trojan
segment_ID attribute_ID blob_data

1 name smith, john, kim, joe
1 phone 2134, 3425, 6756, 9878
1 market_segment automobile, household, furniture, building
2 name mark, steve, jim, ian
2 phone 4312, 2435, 5766, 8789
2 market_segment building, automobile, household, household

We store each entry in the blob_data column of the above table as
a BLOB, thus mimicking a column-oriented storage. Experimen-
tally, we found bigger segment sizes, e.g. ⇠10M, to be more suit-
able. The data storage idea for Trojan Columns is inspired by SQL
Server Column Indexes [7]. However, in practice, Trojan Columns
is radically different from Column Indexes in several ways.

First, Trojan Columns uses UDFs to store the blob data instead
of native SQL support in case of Column Indexes. This not only
makes Trojan Columns plug-and-play, but also allows us to cus-
tomize the blob storage to user applications. For example, we might
prefer light weight compression (e.g. RLE) for read-intensive ap-
plication and higher compression ratio (e.g. Huffman) for archive
applications. Additionally, we could simply let the database sys-
tem apply the default compression method for blobs, e.g. TOAST
compression in PostgreSQL. Likewise, we might choose to sort the
data within or even across the blobs in any way, e.g. sort on attribute
IDs. Essentially, we have full control and flexibility to decide how
the blobs must reside on disk.

Second, Trojan Columns is quite different from SQL Server Col-
umn Indexes not only in data storage, but also in data access. Sim-
ilar to data storage, the access method is plugged into a given
database, instead of making deep changes in the data access layer
itself. Again, based on user applications, we have full control to
decide how to access the data. For example, for an airline com-
pany, we may choose to look for all possible connections only for
premium customers.

Third, Trojan Columns uses standard database tables to store the
blob, instead of a new index type in case of Column Indexes. The
database uses its own physical storage mechanism to persist the
blob table on disk. In other words, Trojan Columns simply pro-
vides a mechanism to decouple logical representation of relations
from their physical implementation, a.k.a physical data indepen-
dence, which, unfortunately, still remains a myth in several mod-
ern databases [10]. Finally, with Trojan Columns the database sys-
tem is entirely agnostic of the column store functionality injected
within, i.e. no new SQL keywords, or data types, or any entries
in the system catalog have to be added. The consequence is that
Trojan Columns is database product independent, i.e. they can be
plugged into any existing database product.

2

product, is it possible to introduce column store technology in it to
support analytical workloads efficiently? All this without having
access to the source code of the database product.

1.3 Our Idea
Our idea is to use User Defined Functions (UDFs) as an access

layer for data storage and retrieval. To do so, we create and install
certain UDFs within the database system and exploit them when-
ever we need to store or access data. The data is actually stored
in a compressed column-oriented fashion on disk. But the UDFs
translate it into the row layout for the query processor. This means
we trick the database into believing that the data is still stored in
row layout, even though it is not. Finally, note that our approach is
very different from the two extremes of data stores: either having a
different product for different stores or doing deep seated changes
in the database product. We do neither of these, but still gain per-
formance significantly. The major benefits of our approach are as
follows:

(1.) Injects column store functionality into existing closed source
database products e.g. IBM DB2, Oracle.
(2.) Logical view of data remains unchanged for the outside user;
instead, the changes are transparently injected inside the DBMS.
(3.) Does not invade or make heavy changes in the system; rather,
uses lightweight UDFs to store and access the data.
(4.) Just fixes the storage layer (row, column, or even column-
grouped layouts) by inserting appropriate UDFs.
(5.) Reuses the query optimizer (at least partially) and therefore no
need to re-implement state-of-the-art database technologies.
(6.) User queries remain (almost) unchanged.

1.4 Contributions
Our main contributions are as follows:

(1.) We present Trojan Columns: a radically different technique
to inject column store functionality into a given database system.
Trojan Columns masks the database storage layer and translates
back and forth from users’ row-view to the physical column-view
of data. All the while, users’ view remains unchanged. (Section 2)
(2.) We present techniques to query Trojan Columns. We show
how to push down one or more operators in the query tree to the
UDFs. We describe how to rewrite the user queries in order to use
the UDFs for data access. (Section 3)
(3.) We present experimental results from DBMS-X over TPC-H
datasets. We evaluate Trojan Columns over there different bench-
marks including (1) unmodified TPC-H queries, (2) simplified
TPC-H queries as proposed in the C-Store paper [8], as well as
(3) micro-benchmarks to investigate the pros and cons of Trojan
Columns by varying several query parameters. (Section 4)

2. TROJAN COLUMNS
In this section, we present Trojan Columns: a novel way of in-

jecting column store functionality in a given row-oriented database
system. Trojan Columns uses table returning UDFs2 to translate the
user’s logical row view to the physical column view on disk. The
core philosophy of Trojan Columns is very similar to Trojan tech-
niques in Hadoop++ [4, 6]: affect the changes from inside without
changing the source code of the system. In the following, we de-
scribe how to create Trojan Columns.
2Typically database systems support three kinds of UDFs based on
their return types: (i) scalar value returning UDFs, (ii) row return-
ing UDFs, and (iii) table (of rows) returning UDFs.

Trojan Columns maps logical relations to physical tables as
follows. First, we horizontally partition a given relation T into
segments. Then, we store each attribute in a given segment
as a separate BLOB (binary large object) in a physical table
T_trojan(segment_ID, attribute_ID, blob_data). To illustrate, con-
sider the following entries of a Customer relation.

Customer
name phone market_segment
smith 2134 automobile
john 3425 household
kim 6756 furniture
joe 9878 building
mark 4312 building
steve 2435 automobile
jim 5766 household
ian 8789 household

Assuming a segment size of 4, i.e. 4 entries of each column are
mapped to a different row, Trojan Columns converts this to the fol-
lowing Customer_trojan table:

Customer_trojan
segment_ID attribute_ID blob_data

1 name smith, john, kim, joe
1 phone 2134, 3425, 6756, 9878
1 market_segment automobile, household, furniture, building
2 name mark, steve, jim, ian
2 phone 4312, 2435, 5766, 8789
2 market_segment building, automobile, household, household

We store each entry in the blob_data column of the above table as
a BLOB, thus mimicking a column-oriented storage. Experimen-
tally, we found bigger segment sizes, e.g. ⇠10M, to be more suit-
able. The data storage idea for Trojan Columns is inspired by SQL
Server Column Indexes [7]. However, in practice, Trojan Columns
is radically different from Column Indexes in several ways.

First, Trojan Columns uses UDFs to store the blob data instead
of native SQL support in case of Column Indexes. This not only
makes Trojan Columns plug-and-play, but also allows us to cus-
tomize the blob storage to user applications. For example, we might
prefer light weight compression (e.g. RLE) for read-intensive ap-
plication and higher compression ratio (e.g. Huffman) for archive
applications. Additionally, we could simply let the database sys-
tem apply the default compression method for blobs, e.g. TOAST
compression in PostgreSQL. Likewise, we might choose to sort the
data within or even across the blobs in any way, e.g. sort on attribute
IDs. Essentially, we have full control and flexibility to decide how
the blobs must reside on disk.

Second, Trojan Columns is quite different from SQL Server Col-
umn Indexes not only in data storage, but also in data access. Sim-
ilar to data storage, the access method is plugged into a given
database, instead of making deep changes in the data access layer
itself. Again, based on user applications, we have full control to
decide how to access the data. For example, for an airline com-
pany, we may choose to look for all possible connections only for
premium customers.

Third, Trojan Columns uses standard database tables to store the
blob, instead of a new index type in case of Column Indexes. The
database uses its own physical storage mechanism to persist the
blob table on disk. In other words, Trojan Columns simply pro-
vides a mechanism to decouple logical representation of relations
from their physical implementation, a.k.a physical data indepen-
dence, which, unfortunately, still remains a myth in several mod-
ern databases [10]. Finally, with Trojan Columns the database sys-
tem is entirely agnostic of the column store functionality injected
within, i.e. no new SQL keywords, or data types, or any entries
in the system catalog have to be added. The consequence is that
Trojan Columns is database product independent, i.e. they can be
plugged into any existing database product.

2

Relation

Physical Table

Trojan Columns

32

product, is it possible to introduce column store technology in it to
support analytical workloads efficiently? All this without having
access to the source code of the database product.

1.3 Our Idea
Our idea is to use User Defined Functions (UDFs) as an access

layer for data storage and retrieval. To do so, we create and install
certain UDFs within the database system and exploit them when-
ever we need to store or access data. The data is actually stored
in a compressed column-oriented fashion on disk. But the UDFs
translate it into the row layout for the query processor. This means
we trick the database into believing that the data is still stored in
row layout, even though it is not. Finally, note that our approach is
very different from the two extremes of data stores: either having a
different product for different stores or doing deep seated changes
in the database product. We do neither of these, but still gain per-
formance significantly. The major benefits of our approach are as
follows:

(1.) Injects column store functionality into existing closed source
database products e.g. IBM DB2, Oracle.
(2.) Logical view of data remains unchanged for the outside user;
instead, the changes are transparently injected inside the DBMS.
(3.) Does not invade or make heavy changes in the system; rather,
uses lightweight UDFs to store and access the data.
(4.) Just fixes the storage layer (row, column, or even column-
grouped layouts) by inserting appropriate UDFs.
(5.) Reuses the query optimizer (at least partially) and therefore no
need to re-implement state-of-the-art database technologies.
(6.) User queries remain (almost) unchanged.

1.4 Contributions
Our main contributions are as follows:

(1.) We present Trojan Columns: a radically different technique
to inject column store functionality into a given database system.
Trojan Columns masks the database storage layer and translates
back and forth from users’ row-view to the physical column-view
of data. All the while, users’ view remains unchanged. (Section 2)
(2.) We present techniques to query Trojan Columns. We show
how to push down one or more operators in the query tree to the
UDFs. We describe how to rewrite the user queries in order to use
the UDFs for data access. (Section 3)
(3.) We present experimental results from DBMS-X over TPC-H
datasets. We evaluate Trojan Columns over there different bench-
marks including (1) unmodified TPC-H queries, (2) simplified
TPC-H queries as proposed in the C-Store paper [8], as well as
(3) micro-benchmarks to investigate the pros and cons of Trojan
Columns by varying several query parameters. (Section 4)

2. TROJAN COLUMNS
In this section, we present Trojan Columns: a novel way of in-

jecting column store functionality in a given row-oriented database
system. Trojan Columns uses table returning UDFs2 to translate the
user’s logical row view to the physical column view on disk. The
core philosophy of Trojan Columns is very similar to Trojan tech-
niques in Hadoop++ [4, 6]: affect the changes from inside without
changing the source code of the system. In the following, we de-
scribe how to create Trojan Columns.
2Typically database systems support three kinds of UDFs based on
their return types: (i) scalar value returning UDFs, (ii) row return-
ing UDFs, and (iii) table (of rows) returning UDFs.

Trojan Columns maps logical relations to physical tables as
follows. First, we horizontally partition a given relation T into
segments. Then, we store each attribute in a given segment
as a separate BLOB (binary large object) in a physical table
T_trojan(segment_ID, attribute_ID, blob_data). To illustrate, con-
sider the following entries of a Customer relation.

Customer
name phone market_segment
smith 2134 automobile
john 3425 household
kim 6756 furniture
joe 9878 building
mark 4312 building
steve 2435 automobile
jim 5766 household
ian 8789 household

Assuming a segment size of 4, i.e. 4 entries of each column are
mapped to a different row, Trojan Columns converts this to the fol-
lowing Customer_trojan table:

Customer_trojan
segment_ID attribute_ID blob_data

1 name smith, john, kim, joe
1 phone 2134, 3425, 6756, 9878
1 market_segment automobile, household, furniture, building
2 name mark, steve, jim, ian
2 phone 4312, 2435, 5766, 8789
2 market_segment building, automobile, household, household

We store each entry in the blob_data column of the above table as
a BLOB, thus mimicking a column-oriented storage. Experimen-
tally, we found bigger segment sizes, e.g. ⇠10M, to be more suit-
able. The data storage idea for Trojan Columns is inspired by SQL
Server Column Indexes [7]. However, in practice, Trojan Columns
is radically different from Column Indexes in several ways.

First, Trojan Columns uses UDFs to store the blob data instead
of native SQL support in case of Column Indexes. This not only
makes Trojan Columns plug-and-play, but also allows us to cus-
tomize the blob storage to user applications. For example, we might
prefer light weight compression (e.g. RLE) for read-intensive ap-
plication and higher compression ratio (e.g. Huffman) for archive
applications. Additionally, we could simply let the database sys-
tem apply the default compression method for blobs, e.g. TOAST
compression in PostgreSQL. Likewise, we might choose to sort the
data within or even across the blobs in any way, e.g. sort on attribute
IDs. Essentially, we have full control and flexibility to decide how
the blobs must reside on disk.

Second, Trojan Columns is quite different from SQL Server Col-
umn Indexes not only in data storage, but also in data access. Sim-
ilar to data storage, the access method is plugged into a given
database, instead of making deep changes in the data access layer
itself. Again, based on user applications, we have full control to
decide how to access the data. For example, for an airline com-
pany, we may choose to look for all possible connections only for
premium customers.

Third, Trojan Columns uses standard database tables to store the
blob, instead of a new index type in case of Column Indexes. The
database uses its own physical storage mechanism to persist the
blob table on disk. In other words, Trojan Columns simply pro-
vides a mechanism to decouple logical representation of relations
from their physical implementation, a.k.a physical data indepen-
dence, which, unfortunately, still remains a myth in several mod-
ern databases [10]. Finally, with Trojan Columns the database sys-
tem is entirely agnostic of the column store functionality injected
within, i.e. no new SQL keywords, or data types, or any entries
in the system catalog have to be added. The consequence is that
Trojan Columns is database product independent, i.e. they can be
plugged into any existing database product.

2

product, is it possible to introduce column store technology in it to
support analytical workloads efficiently? All this without having
access to the source code of the database product.

1.3 Our Idea
Our idea is to use User Defined Functions (UDFs) as an access

layer for data storage and retrieval. To do so, we create and install
certain UDFs within the database system and exploit them when-
ever we need to store or access data. The data is actually stored
in a compressed column-oriented fashion on disk. But the UDFs
translate it into the row layout for the query processor. This means
we trick the database into believing that the data is still stored in
row layout, even though it is not. Finally, note that our approach is
very different from the two extremes of data stores: either having a
different product for different stores or doing deep seated changes
in the database product. We do neither of these, but still gain per-
formance significantly. The major benefits of our approach are as
follows:

(1.) Injects column store functionality into existing closed source
database products e.g. IBM DB2, Oracle.
(2.) Logical view of data remains unchanged for the outside user;
instead, the changes are transparently injected inside the DBMS.
(3.) Does not invade or make heavy changes in the system; rather,
uses lightweight UDFs to store and access the data.
(4.) Just fixes the storage layer (row, column, or even column-
grouped layouts) by inserting appropriate UDFs.
(5.) Reuses the query optimizer (at least partially) and therefore no
need to re-implement state-of-the-art database technologies.
(6.) User queries remain (almost) unchanged.

1.4 Contributions
Our main contributions are as follows:

(1.) We present Trojan Columns: a radically different technique
to inject column store functionality into a given database system.
Trojan Columns masks the database storage layer and translates
back and forth from users’ row-view to the physical column-view
of data. All the while, users’ view remains unchanged. (Section 2)
(2.) We present techniques to query Trojan Columns. We show
how to push down one or more operators in the query tree to the
UDFs. We describe how to rewrite the user queries in order to use
the UDFs for data access. (Section 3)
(3.) We present experimental results from DBMS-X over TPC-H
datasets. We evaluate Trojan Columns over there different bench-
marks including (1) unmodified TPC-H queries, (2) simplified
TPC-H queries as proposed in the C-Store paper [8], as well as
(3) micro-benchmarks to investigate the pros and cons of Trojan
Columns by varying several query parameters. (Section 4)

2. TROJAN COLUMNS
In this section, we present Trojan Columns: a novel way of in-

jecting column store functionality in a given row-oriented database
system. Trojan Columns uses table returning UDFs2 to translate the
user’s logical row view to the physical column view on disk. The
core philosophy of Trojan Columns is very similar to Trojan tech-
niques in Hadoop++ [4, 6]: affect the changes from inside without
changing the source code of the system. In the following, we de-
scribe how to create Trojan Columns.
2Typically database systems support three kinds of UDFs based on
their return types: (i) scalar value returning UDFs, (ii) row return-
ing UDFs, and (iii) table (of rows) returning UDFs.

Trojan Columns maps logical relations to physical tables as
follows. First, we horizontally partition a given relation T into
segments. Then, we store each attribute in a given segment
as a separate BLOB (binary large object) in a physical table
T_trojan(segment_ID, attribute_ID, blob_data). To illustrate, con-
sider the following entries of a Customer relation.

Customer
name phone market_segment
smith 2134 automobile
john 3425 household
kim 6756 furniture
joe 9878 building
mark 4312 building
steve 2435 automobile
jim 5766 household
ian 8789 household

Assuming a segment size of 4, i.e. 4 entries of each column are
mapped to a different row, Trojan Columns converts this to the fol-
lowing Customer_trojan table:

Customer_trojan
segment_ID attribute_ID blob_data

1 name smith, john, kim, joe
1 phone 2134, 3425, 6756, 9878
1 market_segment automobile, household, furniture, building
2 name mark, steve, jim, ian
2 phone 4312, 2435, 5766, 8789
2 market_segment building, automobile, household, household

We store each entry in the blob_data column of the above table as
a BLOB, thus mimicking a column-oriented storage. Experimen-
tally, we found bigger segment sizes, e.g. ⇠10M, to be more suit-
able. The data storage idea for Trojan Columns is inspired by SQL
Server Column Indexes [7]. However, in practice, Trojan Columns
is radically different from Column Indexes in several ways.

First, Trojan Columns uses UDFs to store the blob data instead
of native SQL support in case of Column Indexes. This not only
makes Trojan Columns plug-and-play, but also allows us to cus-
tomize the blob storage to user applications. For example, we might
prefer light weight compression (e.g. RLE) for read-intensive ap-
plication and higher compression ratio (e.g. Huffman) for archive
applications. Additionally, we could simply let the database sys-
tem apply the default compression method for blobs, e.g. TOAST
compression in PostgreSQL. Likewise, we might choose to sort the
data within or even across the blobs in any way, e.g. sort on attribute
IDs. Essentially, we have full control and flexibility to decide how
the blobs must reside on disk.

Second, Trojan Columns is quite different from SQL Server Col-
umn Indexes not only in data storage, but also in data access. Sim-
ilar to data storage, the access method is plugged into a given
database, instead of making deep changes in the data access layer
itself. Again, based on user applications, we have full control to
decide how to access the data. For example, for an airline com-
pany, we may choose to look for all possible connections only for
premium customers.

Third, Trojan Columns uses standard database tables to store the
blob, instead of a new index type in case of Column Indexes. The
database uses its own physical storage mechanism to persist the
blob table on disk. In other words, Trojan Columns simply pro-
vides a mechanism to decouple logical representation of relations
from their physical implementation, a.k.a physical data indepen-
dence, which, unfortunately, still remains a myth in several mod-
ern databases [10]. Finally, with Trojan Columns the database sys-
tem is entirely agnostic of the column store functionality injected
within, i.e. no new SQL keywords, or data types, or any entries
in the system catalog have to be added. The consequence is that
Trojan Columns is database product independent, i.e. they can be
plugged into any existing database product.

2

Relation

Physical Table

Trojan Columns

Tuple
Iterator

Data
Parser

Data
Accesso

r

(a) Convert row
tuples into blobs

(b) Store blob data

(c) Get next
row data

w
ri

te
-U

D
F

33

product, is it possible to introduce column store technology in it to
support analytical workloads efficiently? All this without having
access to the source code of the database product.

1.3 Our Idea
Our idea is to use User Defined Functions (UDFs) as an access

layer for data storage and retrieval. To do so, we create and install
certain UDFs within the database system and exploit them when-
ever we need to store or access data. The data is actually stored
in a compressed column-oriented fashion on disk. But the UDFs
translate it into the row layout for the query processor. This means
we trick the database into believing that the data is still stored in
row layout, even though it is not. Finally, note that our approach is
very different from the two extremes of data stores: either having a
different product for different stores or doing deep seated changes
in the database product. We do neither of these, but still gain per-
formance significantly. The major benefits of our approach are as
follows:

(1.) Injects column store functionality into existing closed source
database products e.g. IBM DB2, Oracle.
(2.) Logical view of data remains unchanged for the outside user;
instead, the changes are transparently injected inside the DBMS.
(3.) Does not invade or make heavy changes in the system; rather,
uses lightweight UDFs to store and access the data.
(4.) Just fixes the storage layer (row, column, or even column-
grouped layouts) by inserting appropriate UDFs.
(5.) Reuses the query optimizer (at least partially) and therefore no
need to re-implement state-of-the-art database technologies.
(6.) User queries remain (almost) unchanged.

1.4 Contributions
Our main contributions are as follows:

(1.) We present Trojan Columns: a radically different technique
to inject column store functionality into a given database system.
Trojan Columns masks the database storage layer and translates
back and forth from users’ row-view to the physical column-view
of data. All the while, users’ view remains unchanged. (Section 2)
(2.) We present techniques to query Trojan Columns. We show
how to push down one or more operators in the query tree to the
UDFs. We describe how to rewrite the user queries in order to use
the UDFs for data access. (Section 3)
(3.) We present experimental results from DBMS-X over TPC-H
datasets. We evaluate Trojan Columns over there different bench-
marks including (1) unmodified TPC-H queries, (2) simplified
TPC-H queries as proposed in the C-Store paper [8], as well as
(3) micro-benchmarks to investigate the pros and cons of Trojan
Columns by varying several query parameters. (Section 4)

2. TROJAN COLUMNS
In this section, we present Trojan Columns: a novel way of in-

jecting column store functionality in a given row-oriented database
system. Trojan Columns uses table returning UDFs2 to translate the
user’s logical row view to the physical column view on disk. The
core philosophy of Trojan Columns is very similar to Trojan tech-
niques in Hadoop++ [4, 6]: affect the changes from inside without
changing the source code of the system. In the following, we de-
scribe how to create Trojan Columns.
2Typically database systems support three kinds of UDFs based on
their return types: (i) scalar value returning UDFs, (ii) row return-
ing UDFs, and (iii) table (of rows) returning UDFs.

Trojan Columns maps logical relations to physical tables as
follows. First, we horizontally partition a given relation T into
segments. Then, we store each attribute in a given segment
as a separate BLOB (binary large object) in a physical table
T_trojan(segment_ID, attribute_ID, blob_data). To illustrate, con-
sider the following entries of a Customer relation.

Customer
name phone market_segment
smith 2134 automobile
john 3425 household
kim 6756 furniture
joe 9878 building
mark 4312 building
steve 2435 automobile
jim 5766 household
ian 8789 household

Assuming a segment size of 4, i.e. 4 entries of each column are
mapped to a different row, Trojan Columns converts this to the fol-
lowing Customer_trojan table:

Customer_trojan
segment_ID attribute_ID blob_data

1 name smith, john, kim, joe
1 phone 2134, 3425, 6756, 9878
1 market_segment automobile, household, furniture, building
2 name mark, steve, jim, ian
2 phone 4312, 2435, 5766, 8789
2 market_segment building, automobile, household, household

We store each entry in the blob_data column of the above table as
a BLOB, thus mimicking a column-oriented storage. Experimen-
tally, we found bigger segment sizes, e.g. ⇠10M, to be more suit-
able. The data storage idea for Trojan Columns is inspired by SQL
Server Column Indexes [7]. However, in practice, Trojan Columns
is radically different from Column Indexes in several ways.

First, Trojan Columns uses UDFs to store the blob data instead
of native SQL support in case of Column Indexes. This not only
makes Trojan Columns plug-and-play, but also allows us to cus-
tomize the blob storage to user applications. For example, we might
prefer light weight compression (e.g. RLE) for read-intensive ap-
plication and higher compression ratio (e.g. Huffman) for archive
applications. Additionally, we could simply let the database sys-
tem apply the default compression method for blobs, e.g. TOAST
compression in PostgreSQL. Likewise, we might choose to sort the
data within or even across the blobs in any way, e.g. sort on attribute
IDs. Essentially, we have full control and flexibility to decide how
the blobs must reside on disk.

Second, Trojan Columns is quite different from SQL Server Col-
umn Indexes not only in data storage, but also in data access. Sim-
ilar to data storage, the access method is plugged into a given
database, instead of making deep changes in the data access layer
itself. Again, based on user applications, we have full control to
decide how to access the data. For example, for an airline com-
pany, we may choose to look for all possible connections only for
premium customers.

Third, Trojan Columns uses standard database tables to store the
blob, instead of a new index type in case of Column Indexes. The
database uses its own physical storage mechanism to persist the
blob table on disk. In other words, Trojan Columns simply pro-
vides a mechanism to decouple logical representation of relations
from their physical implementation, a.k.a physical data indepen-
dence, which, unfortunately, still remains a myth in several mod-
ern databases [10]. Finally, with Trojan Columns the database sys-
tem is entirely agnostic of the column store functionality injected
within, i.e. no new SQL keywords, or data types, or any entries
in the system catalog have to be added. The consequence is that
Trojan Columns is database product independent, i.e. they can be
plugged into any existing database product.

2

product, is it possible to introduce column store technology in it to
support analytical workloads efficiently? All this without having
access to the source code of the database product.

1.3 Our Idea
Our idea is to use User Defined Functions (UDFs) as an access

layer for data storage and retrieval. To do so, we create and install
certain UDFs within the database system and exploit them when-
ever we need to store or access data. The data is actually stored
in a compressed column-oriented fashion on disk. But the UDFs
translate it into the row layout for the query processor. This means
we trick the database into believing that the data is still stored in
row layout, even though it is not. Finally, note that our approach is
very different from the two extremes of data stores: either having a
different product for different stores or doing deep seated changes
in the database product. We do neither of these, but still gain per-
formance significantly. The major benefits of our approach are as
follows:

(1.) Injects column store functionality into existing closed source
database products e.g. IBM DB2, Oracle.
(2.) Logical view of data remains unchanged for the outside user;
instead, the changes are transparently injected inside the DBMS.
(3.) Does not invade or make heavy changes in the system; rather,
uses lightweight UDFs to store and access the data.
(4.) Just fixes the storage layer (row, column, or even column-
grouped layouts) by inserting appropriate UDFs.
(5.) Reuses the query optimizer (at least partially) and therefore no
need to re-implement state-of-the-art database technologies.
(6.) User queries remain (almost) unchanged.

1.4 Contributions
Our main contributions are as follows:

(1.) We present Trojan Columns: a radically different technique
to inject column store functionality into a given database system.
Trojan Columns masks the database storage layer and translates
back and forth from users’ row-view to the physical column-view
of data. All the while, users’ view remains unchanged. (Section 2)
(2.) We present techniques to query Trojan Columns. We show
how to push down one or more operators in the query tree to the
UDFs. We describe how to rewrite the user queries in order to use
the UDFs for data access. (Section 3)
(3.) We present experimental results from DBMS-X over TPC-H
datasets. We evaluate Trojan Columns over there different bench-
marks including (1) unmodified TPC-H queries, (2) simplified
TPC-H queries as proposed in the C-Store paper [8], as well as
(3) micro-benchmarks to investigate the pros and cons of Trojan
Columns by varying several query parameters. (Section 4)

2. TROJAN COLUMNS
In this section, we present Trojan Columns: a novel way of in-

jecting column store functionality in a given row-oriented database
system. Trojan Columns uses table returning UDFs2 to translate the
user’s logical row view to the physical column view on disk. The
core philosophy of Trojan Columns is very similar to Trojan tech-
niques in Hadoop++ [4, 6]: affect the changes from inside without
changing the source code of the system. In the following, we de-
scribe how to create Trojan Columns.
2Typically database systems support three kinds of UDFs based on
their return types: (i) scalar value returning UDFs, (ii) row return-
ing UDFs, and (iii) table (of rows) returning UDFs.

Trojan Columns maps logical relations to physical tables as
follows. First, we horizontally partition a given relation T into
segments. Then, we store each attribute in a given segment
as a separate BLOB (binary large object) in a physical table
T_trojan(segment_ID, attribute_ID, blob_data). To illustrate, con-
sider the following entries of a Customer relation.

Customer
name phone market_segment
smith 2134 automobile
john 3425 household
kim 6756 furniture
joe 9878 building
mark 4312 building
steve 2435 automobile
jim 5766 household
ian 8789 household

Assuming a segment size of 4, i.e. 4 entries of each column are
mapped to a different row, Trojan Columns converts this to the fol-
lowing Customer_trojan table:

Customer_trojan
segment_ID attribute_ID blob_data

1 name smith, john, kim, joe
1 phone 2134, 3425, 6756, 9878
1 market_segment automobile, household, furniture, building
2 name mark, steve, jim, ian
2 phone 4312, 2435, 5766, 8789
2 market_segment building, automobile, household, household

We store each entry in the blob_data column of the above table as
a BLOB, thus mimicking a column-oriented storage. Experimen-
tally, we found bigger segment sizes, e.g. ⇠10M, to be more suit-
able. The data storage idea for Trojan Columns is inspired by SQL
Server Column Indexes [7]. However, in practice, Trojan Columns
is radically different from Column Indexes in several ways.

First, Trojan Columns uses UDFs to store the blob data instead
of native SQL support in case of Column Indexes. This not only
makes Trojan Columns plug-and-play, but also allows us to cus-
tomize the blob storage to user applications. For example, we might
prefer light weight compression (e.g. RLE) for read-intensive ap-
plication and higher compression ratio (e.g. Huffman) for archive
applications. Additionally, we could simply let the database sys-
tem apply the default compression method for blobs, e.g. TOAST
compression in PostgreSQL. Likewise, we might choose to sort the
data within or even across the blobs in any way, e.g. sort on attribute
IDs. Essentially, we have full control and flexibility to decide how
the blobs must reside on disk.

Second, Trojan Columns is quite different from SQL Server Col-
umn Indexes not only in data storage, but also in data access. Sim-
ilar to data storage, the access method is plugged into a given
database, instead of making deep changes in the data access layer
itself. Again, based on user applications, we have full control to
decide how to access the data. For example, for an airline com-
pany, we may choose to look for all possible connections only for
premium customers.

Third, Trojan Columns uses standard database tables to store the
blob, instead of a new index type in case of Column Indexes. The
database uses its own physical storage mechanism to persist the
blob table on disk. In other words, Trojan Columns simply pro-
vides a mechanism to decouple logical representation of relations
from their physical implementation, a.k.a physical data indepen-
dence, which, unfortunately, still remains a myth in several mod-
ern databases [10]. Finally, with Trojan Columns the database sys-
tem is entirely agnostic of the column store functionality injected
within, i.e. no new SQL keywords, or data types, or any entries
in the system catalog have to be added. The consequence is that
Trojan Columns is database product independent, i.e. they can be
plugged into any existing database product.

2

Relation

Physical Table

Trojan Columns

Tuple
Iterator

Data
Parser

Data
Accessor

(e) Reconstruct
row tuples

(d) Parse blob data

(f) Fetch
blob data

(g)End of table

re
ad

-U
D

F

Example: TPC-H Query 6
Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

sc
an
U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad
-U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

selectUDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad
-U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

34

Example: TPC-H Query 6Resultquantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

read-UDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

read-UDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

read-UDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

read-UDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

(a)
Standard

plan

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

scanUDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

read-UDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

selectU
D
F

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

read-UDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

(b)
Scan

pushdow
n

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

scanUDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

read-UDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

selectU
D
F

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

read-UDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

(c)
Selectpushdow

n

Figure
1:

Standard
and

U
D

F
query

plansfor
T

PC
-H

Q
uery

6.

3.
Q

U
E

R
Y

IN
G

T
R

O
JA

N
C

O
L

U
M

N
S

In
the

previous
section,

w
e

described
how

to
create

Trojan
C

olum
ns.

In
this

section,w
e

describe
how

w
e

process
queries

us-
ing

Trojan
C

olum
ns.

Since
Trojan

C
olum

ns
internally

store
data

in
colum

n-oriented
fashion,

w
e

need
to

translate
the

data
back

to
row

layoutbefore
passing

itto
the

query
processor,i.e.use

a
U

D
F

to
scan

the
table.

A
dditionally,

w
e

m
ay

also
push

dow
n

other
operators

to
the

U
D

F
in

order
to

boost
perform

ance.
B

elow
,

w
e

firstdescribe
operator

pushdow
n

as
a

technique
to

process
Trojan

C
olum

ns,and
then

w
e

describe
how

to
rew

rite
userqueries.

3.1
O

perator
Pushdow

n
T

he
core

idea
ofquerying

Trojan
C

olum
ns

is
to

push
a

partofthe
query

tree
dow

n
to

the
U

D
F.T

his
m

eans
thata

partof
the

query
is

processed
by

the
U

D
F

w
hile

the
rem

aining
query

is
stillprocessed

by
the

standard
database

query
executor.

L
et’s

consider
query

6
from

the
T

PC
-H

benchm
ark

[9]
as

a
running

exam
ple

below
.

Fig-
ure

1(a)
show

s
the

logicalquery
plan

for
query

6.
B

elow
,let’s

see
how

w
e

can
push

dow
n

one
orm

ore
operators

in
query

6
to

a
U

D
F.

Scan
Pushdow

n.
First

of
all,

w
e

need
to

push
dow

n
the

scan
operator

to
the

U
D

F.T
his

is
because

w
e

need
to

interpret
Trojan

C
olum

ns
correctly

(and
differently)

atthe
leaf

level.
Suppose

that
l
i
n
e
i
t
e
m

table
in

query
6

is
stored

as
Trojan

C
olum

ns.
Fig-

ure
1(b)show

sthe
query

plan
w

ith
the

U
D

F.A
sshow

n
in

the
figure,

the
U

D
F

now
figures

outw
hich

physicaltable
to

read
(the

blob
and

not
the

row
representation)

for
l
i
n
e
i
t
e
m

table.
A

lso,the
U

D
F

is
responsible

forinterpreting
the

physicaltable,reconstructing
the

logical
l
i
n
e
i
t
e
m

tuples,and
passing

them
on

to
the

upper
part

ofthe
query

tree.
Projection

Pushdow
n.

A
long

w
ith

the
scan,

w
e

can
also

push
dow

n
the

projection
operatorto

the
U

D
F,i.e.pass

the
projected

at-
tributes

as
param

eters
to

the
U

D
F.T

he
U

D
F

now
returns

only
the

projected
attributes.Since

the
U

D
F

return
type

is
stillthe

com
plete

row
,allother

attribute
values

are
setto

N
U

L
L

.A
consequence

of
pushing

projection
dow

n
to

the
U

D
F

is
thatthe

U
D

F
now

needs
to

fetch
the

blobs
of

only
the

projected
attributes.

T
his

saves
consid-

erable
I/O

costand
im

proves
query

perform
ance.

Selection
Pushdow

n.To
push

the
selection

dow
n,w

e
sim

ply
pass

the
selection

predicate
to

the
U

D
F,as

show
n

in
Figure

1(c).
T

he
U

D
F

is
now

responsible
forevaluating

the
selectpredicate

on
each

of
the

incom
ing

tuple.
To

do
so,

the
U

D
F

now
only

fetches
the

selection
attributes

first.T
hen,before

returning
the

tuple,the
U

D
F

evaluates
the

selection
predicate.

If
the

predicates
satisfy

then
the

U
D

F
fetches

the
projection

attribute
blobs,if

needed,and
returns

a
tuple

of
the

projected
attributes.

If
the

selection
predicates

do

Result

shipdate, disco
unt

extendedprice, partkey

shipdate B
ET

W
EEN

‘1995-09-01’ A

N
D

 ‘1995-10-01’
σπ

agg

100 * SU
M

(C
A

SE
 W

H
EN

 type LIK
E ‘PRO

M
O

%
’

 T
H

EN
 extendedprice*(1-disco

unt)
 ELSE 0
EN

D
) / SU

M
(extendedprice*(1-disco

unt))

γ

lineitem

S
C
A
N

part

S
C
A
N type,

partkey
π

partkey

Result

shipdate, disco
unt

extendedprice, partkey

shipdate B
ET

W
EEN

‘1995-09-01’ A

N
D

 ‘1995-10-01’
σπ

agg

100 * SU
M

(C
A

SE
 W

H
EN

 type LIK
E ‘PRO

M
O

%
’

 T
H

EN
 extendedprice*(1-disco

unt)
 ELSE 0
EN

D
) / SU

M
(extendedprice*(1-disco

unt))

γ

lineitem

S
C
A
N

part

S
C
A
N type,

partkey
π

partkey
aggregateU

D
F

Figure
2:

E
xam

ple
U

D
F

query
plan

for
T

PC
-H

query
14.

notsatisfy,then
the

U
D

F
inspects

the
nextselection

attribute
val-

ues.
T

his
continues

untileither
a

qualifying
tuple

if
found

or
end

ofdata
is

reached.Pushing
dow

n
selection

to
the

U
D

F
has

tw
o

ad-
vantages:

(1)
the

num
ber

of
U

D
F

outputtuples,and
consequently

the
num

ber
of

U
D

F
calls

are
reduced,and

(2)
w

e
can

perform
late

m
aterialization

by
fetching

projection
attributes

only
for

segm
ents

having
at

least
one

tuple
qualifying

the
selection

predicates.
T

he
firstadvantage

saves
the

overhead
in

each
U

D
F

call,w
hile

the
sec-

ond
advantage

saves
I/O

forprojection
attributes.

A
ggregation

Pushdow
n.

W
e

can
even

push
dow

n
the

aggregates
(and

group
by)

to
the

U
D

F.T
he

U
D

F
m

ust
now

do
the

grouping
and

aggregation
before

outputting
any

of
the

tuples.
T

his
m

eans
that

the
U

D
F

m
ust

precom
pute

the
results

w
hen

initializing
and

then
sim

ply
return

the
aggregated

resultsubsequently.
T

he
m

ajor
benefit

of
pushing

aggregation
dow

n
the

U
D

F
is

to
dram

atically
reduce

the
num

berofU
D

F
calls.

D
ealing

w
ith

Join
Q

ueries.
So

far
w

e
have

considered
single

ta-
ble

queries,
i.e.no

join
conditions.

N
ow

let
us

see
how

joins
are

processed
in

the
presence

of
Trojan

C
olum

ns.
For

queries
having

join
conditions,w

e
sim

ply
push

dow
n

the
scan,selection,and

pro-
jection

operators
to

the
U

D
F

and
letthe

database
do

the
join.

T
his

w
orks

w
ell

because
the

output
of

U
D

F
can

be
processed

by
the

database
query

executor.
Figure

2
show

s
the

U
D

F
query

plan
for

T
PC

-H
query

14.
From

the
figure

w
e

see
thatthe

l
i
n
e
i
t
e
m

leaf
is

pushed
inside

the
U

D
F,w

hile
the

join
is

stillperform
ed

outside.
A

lso
note

thatthe
query

plan
in

Figure
2

accesses
p
a
r
t

table
us-

ing
the

standard
database

access
m

ethod.
T

his
is

because
p
a
r
t

is
m

uch
sm

aller
table

and
it

does
not

pay
off

to
use

a
U

D
F

for
it.

T
hus,

w
e

see
that

U
D

Fs
can

be
seam

lessly
integrated

into
the

query
pipeline.

T
his

holds
true

even
for

nested
queries,e.g.T

PC
-

H
query

8.
A

lternatively,
instead

of
letting

the
database

executor
process

the
join,one

could
think

of
even

pushing
dow

n
the

join
to

the
U

D
F.T

he
U

D
F

w
ould

then
have

to
access

tw
o

physicaltables
and

join
them

based
on

the
join

condition.
T

he
advantage

w
ould

be
thatw

e
could

have
even

lesseroutputtuples
(depending

on
join

selectivity).
H

ow
ever,the

problem
is

that
w

e
w

ill
need

to
recode

the
physicaljoin

operators
as

w
ellas

the
optim

izerlogic
to

pick
the

physicaljoin
operator.

T
hus,w

e
see

the
pros

and
cons

of
pushing

too
m

any
operators

dow
n

the
U

D
F.E

xploring
these

in
m

ore
detail

w
illbe

partofa
future

w
ork.

W
here

doesoperator
pushdow

n
lead

to?
In

the
extrem

e
case,w

e
can

push
dow

n
the

entire
SQ

L
query,i.e.allquery

operators,dow
n

to
the

U
D

F.H
ow

ever,this
m

eans
thatthe

U
D

F
is

now
responsible

fordeciding
how

to
execute

a
given

query.In
otherw

ords,the
U

D
F

m
usttake

care
of

query
optim

ization
as

w
ellas

execution,m
aking

ita
m

icro-kernelfor
processing

SQ
L

queries.
T

he
consequence

is

3

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

sc
an
U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad
-U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

selectUDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad
-U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

sc
an
U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad
-U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

selectUDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad
-U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

35

Example: TPC-H Query 6Resultquantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

read-UDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

read-UDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

read-UDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

read-UDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

(a)
Standard

plan

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

scanUDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

read-UDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

selectU
D
F

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

read-UDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

(b)
Scan

pushdow
n

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

scanUDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

read-UDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

selectU
D
F

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

read-UDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

(c)
Selectpushdow

n

Figure
1:

Standard
and

U
D

F
query

plansfor
T

PC
-H

Q
uery

6.

3.
Q

U
E

R
Y

IN
G

T
R

O
JA

N
C

O
L

U
M

N
S

In
the

previous
section,

w
e

described
how

to
create

Trojan
C

olum
ns.

In
this

section,w
e

describe
how

w
e

process
queries

us-
ing

Trojan
C

olum
ns.

Since
Trojan

C
olum

ns
internally

store
data

in
colum

n-oriented
fashion,

w
e

need
to

translate
the

data
back

to
row

layoutbefore
passing

itto
the

query
processor,i.e.use

a
U

D
F

to
scan

the
table.

A
dditionally,

w
e

m
ay

also
push

dow
n

other
operators

to
the

U
D

F
in

order
to

boost
perform

ance.
B

elow
,

w
e

firstdescribe
operator

pushdow
n

as
a

technique
to

process
Trojan

C
olum

ns,and
then

w
e

describe
how

to
rew

rite
userqueries.

3.1
O

perator
Pushdow

n
T

he
core

idea
ofquerying

Trojan
C

olum
ns

is
to

push
a

partofthe
query

tree
dow

n
to

the
U

D
F.T

his
m

eans
thata

partof
the

query
is

processed
by

the
U

D
F

w
hile

the
rem

aining
query

is
stillprocessed

by
the

standard
database

query
executor.

L
et’s

consider
query

6
from

the
T

PC
-H

benchm
ark

[9]
as

a
running

exam
ple

below
.

Fig-
ure

1(a)
show

s
the

logicalquery
plan

for
query

6.
B

elow
,let’s

see
how

w
e

can
push

dow
n

one
orm

ore
operators

in
query

6
to

a
U

D
F.

Scan
Pushdow

n.
First

of
all,

w
e

need
to

push
dow

n
the

scan
operator

to
the

U
D

F.T
his

is
because

w
e

need
to

interpret
Trojan

C
olum

ns
correctly

(and
differently)

atthe
leaf

level.
Suppose

that
l
i
n
e
i
t
e
m

table
in

query
6

is
stored

as
Trojan

C
olum

ns.
Fig-

ure
1(b)show

sthe
query

plan
w

ith
the

U
D

F.A
sshow

n
in

the
figure,

the
U

D
F

now
figures

outw
hich

physicaltable
to

read
(the

blob
and

not
the

row
representation)

for
l
i
n
e
i
t
e
m

table.
A

lso,the
U

D
F

is
responsible

forinterpreting
the

physicaltable,reconstructing
the

logical
l
i
n
e
i
t
e
m

tuples,and
passing

them
on

to
the

upper
part

ofthe
query

tree.
Projection

Pushdow
n.

A
long

w
ith

the
scan,

w
e

can
also

push
dow

n
the

projection
operatorto

the
U

D
F,i.e.pass

the
projected

at-
tributes

as
param

eters
to

the
U

D
F.T

he
U

D
F

now
returns

only
the

projected
attributes.Since

the
U

D
F

return
type

is
stillthe

com
plete

row
,allother

attribute
values

are
setto

N
U

L
L

.A
consequence

of
pushing

projection
dow

n
to

the
U

D
F

is
thatthe

U
D

F
now

needs
to

fetch
the

blobs
of

only
the

projected
attributes.

T
his

saves
consid-

erable
I/O

costand
im

proves
query

perform
ance.

Selection
Pushdow

n.To
push

the
selection

dow
n,w

e
sim

ply
pass

the
selection

predicate
to

the
U

D
F,as

show
n

in
Figure

1(c).
T

he
U

D
F

is
now

responsible
forevaluating

the
selectpredicate

on
each

of
the

incom
ing

tuple.
To

do
so,

the
U

D
F

now
only

fetches
the

selection
attributes

first.T
hen,before

returning
the

tuple,the
U

D
F

evaluates
the

selection
predicate.

If
the

predicates
satisfy

then
the

U
D

F
fetches

the
projection

attribute
blobs,if

needed,and
returns

a
tuple

of
the

projected
attributes.

If
the

selection
predicates

do

Result

shipdate, disco
unt

extendedprice, partkey

shipdate B
ET

W
EEN

‘1995-09-01’ A

N
D

 ‘1995-10-01’
σπ

agg

100 * SU
M

(C
A

SE
 W

H
EN

 type LIK
E ‘PRO

M
O

%
’

 T
H

EN
 extendedprice*(1-disco

unt)
 ELSE 0
EN

D
) / SU

M
(extendedprice*(1-disco

unt))

γ

lineitem

S
C
A
N

part

S
C
A
N type,

partkey
π

partkey

Result

shipdate, disco
unt

extendedprice, partkey

shipdate B
ET

W
EEN

‘1995-09-01’ A

N
D

 ‘1995-10-01’
σπ

agg

100 * SU
M

(C
A

SE
 W

H
EN

 type LIK
E ‘PRO

M
O

%
’

 T
H

EN
 extendedprice*(1-disco

unt)
 ELSE 0
EN

D
) / SU

M
(extendedprice*(1-disco

unt))

γ

lineitem

S
C
A
N

part

S
C
A
N type,

partkey
π

partkey
aggregateU

D
F

Figure
2:

E
xam

ple
U

D
F

query
plan

for
T

PC
-H

query
14.

notsatisfy,then
the

U
D

F
inspects

the
nextselection

attribute
val-

ues.
T

his
continues

untileither
a

qualifying
tuple

if
found

or
end

ofdata
is

reached.Pushing
dow

n
selection

to
the

U
D

F
has

tw
o

ad-
vantages:

(1)
the

num
ber

of
U

D
F

outputtuples,and
consequently

the
num

ber
of

U
D

F
calls

are
reduced,and

(2)
w

e
can

perform
late

m
aterialization

by
fetching

projection
attributes

only
for

segm
ents

having
at

least
one

tuple
qualifying

the
selection

predicates.
T

he
firstadvantage

saves
the

overhead
in

each
U

D
F

call,w
hile

the
sec-

ond
advantage

saves
I/O

forprojection
attributes.

A
ggregation

Pushdow
n.

W
e

can
even

push
dow

n
the

aggregates
(and

group
by)

to
the

U
D

F.T
he

U
D

F
m

ust
now

do
the

grouping
and

aggregation
before

outputting
any

of
the

tuples.
T

his
m

eans
that

the
U

D
F

m
ust

precom
pute

the
results

w
hen

initializing
and

then
sim

ply
return

the
aggregated

resultsubsequently.
T

he
m

ajor
benefit

of
pushing

aggregation
dow

n
the

U
D

F
is

to
dram

atically
reduce

the
num

berofU
D

F
calls.

D
ealing

w
ith

Join
Q

ueries.
So

far
w

e
have

considered
single

ta-
ble

queries,
i.e.no

join
conditions.

N
ow

let
us

see
how

joins
are

processed
in

the
presence

of
Trojan

C
olum

ns.
For

queries
having

join
conditions,w

e
sim

ply
push

dow
n

the
scan,selection,and

pro-
jection

operators
to

the
U

D
F

and
letthe

database
do

the
join.

T
his

w
orks

w
ell

because
the

output
of

U
D

F
can

be
processed

by
the

database
query

executor.
Figure

2
show

s
the

U
D

F
query

plan
for

T
PC

-H
query

14.
From

the
figure

w
e

see
thatthe

l
i
n
e
i
t
e
m

leaf
is

pushed
inside

the
U

D
F,w

hile
the

join
is

stillperform
ed

outside.
A

lso
note

thatthe
query

plan
in

Figure
2

accesses
p
a
r
t

table
us-

ing
the

standard
database

access
m

ethod.
T

his
is

because
p
a
r
t

is
m

uch
sm

aller
table

and
it

does
not

pay
off

to
use

a
U

D
F

for
it.

T
hus,

w
e

see
that

U
D

Fs
can

be
seam

lessly
integrated

into
the

query
pipeline.

T
his

holds
true

even
for

nested
queries,e.g.T

PC
-

H
query

8.
A

lternatively,
instead

of
letting

the
database

executor
process

the
join,one

could
think

of
even

pushing
dow

n
the

join
to

the
U

D
F.T

he
U

D
F

w
ould

then
have

to
access

tw
o

physicaltables
and

join
them

based
on

the
join

condition.
T

he
advantage

w
ould

be
thatw

e
could

have
even

lesseroutputtuples
(depending

on
join

selectivity).
H

ow
ever,the

problem
is

that
w

e
w

ill
need

to
recode

the
physicaljoin

operators
as

w
ellas

the
optim

izerlogic
to

pick
the

physicaljoin
operator.

T
hus,w

e
see

the
pros

and
cons

of
pushing

too
m

any
operators

dow
n

the
U

D
F.E

xploring
these

in
m

ore
detail

w
illbe

partofa
future

w
ork.

W
here

doesoperator
pushdow

n
lead

to?
In

the
extrem

e
case,w

e
can

push
dow

n
the

entire
SQ

L
query,i.e.allquery

operators,dow
n

to
the

U
D

F.H
ow

ever,this
m

eans
thatthe

U
D

F
is

now
responsible

fordeciding
how

to
execute

a
given

query.In
otherw

ords,the
U

D
F

m
usttake

care
of

query
optim

ization
as

w
ellas

execution,m
aking

ita
m

icro-kernelfor
processing

SQ
L

queries.
T

he
consequence

is

3

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad

-U
D

F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad

-U
D

F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad

-U
D

F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad

-U
D

F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

(a) Standard plan

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

sc
an
U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN
re

ad
-U

D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

selectUDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad

-U
D

F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

(b) Scan pushdown

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

sc
an
U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad

-U
D

F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

selectUDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad

-U
D

F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

(c) Select pushdown

Figure 1: Standard and UDF query plans for TPC-H Query 6.

3. QUERYING TROJAN COLUMNS
In the previous section, we described how to create Trojan

Columns. In this section, we describe how we process queries us-
ing Trojan Columns. Since Trojan Columns internally store data
in column-oriented fashion, we need to translate the data back to
row layout before passing it to the query processor, i.e. use a UDF
to scan the table. Additionally, we may also push down other
operators to the UDF in order to boost performance. Below, we
first describe operator pushdown as a technique to process Trojan
Columns, and then we describe how to rewrite user queries.

3.1 Operator Pushdown
The core idea of querying Trojan Columns is to push a part of the

query tree down to the UDF. This means that a part of the query is
processed by the UDF while the remaining query is still processed
by the standard database query executor. Let’s consider query 6
from the TPC-H benchmark [9] as a running example below. Fig-
ure 1(a) shows the logical query plan for query 6. Below, let’s see
how we can push down one or more operators in query 6 to a UDF.
Scan Pushdown. First of all, we need to push down the scan
operator to the UDF. This is because we need to interpret Trojan
Columns correctly (and differently) at the leaf level. Suppose that
lineitem table in query 6 is stored as Trojan Columns. Fig-
ure 1(b) shows the query plan with the UDF. As shown in the figure,
the UDF now figures out which physical table to read (the blob and
not the row representation) for lineitem table. Also, the UDF
is responsible for interpreting the physical table, reconstructing the
logical lineitem tuples, and passing them on to the upper part
of the query tree.
Projection Pushdown. Along with the scan, we can also push
down the projection operator to the UDF, i.e. pass the projected at-
tributes as parameters to the UDF. The UDF now returns only the
projected attributes. Since the UDF return type is still the complete
row, all other attribute values are set to NULL. A consequence of
pushing projection down to the UDF is that the UDF now needs to
fetch the blobs of only the projected attributes. This saves consid-
erable I/O cost and improves query performance.
Selection Pushdown. To push the selection down, we simply pass
the selection predicate to the UDF, as shown in Figure 1(c). The
UDF is now responsible for evaluating the select predicate on each
of the incoming tuple. To do so, the UDF now only fetches the
selection attributes first. Then, before returning the tuple, the UDF
evaluates the selection predicate. If the predicates satisfy then the
UDF fetches the projection attribute blobs, if needed, and returns
a tuple of the projected attributes. If the selection predicates do

Result

shipdate, discount
extendedprice, partkey

shipdate BETWEEN
‘1995-09-01’ AND ‘1995-10-01’
σ
π

agg

100 * SUM(CASE
 WHEN type LIKE ‘PROMO%’
 THEN extendedprice*(1-discount)
 ELSE 0
END) / SUM(extendedprice*(1-discount))

γ

lineitem

SCANpart

SCAN

type,
partkey
π

partkey

Result

shipdate, discount
extendedprice, partkey

shipdate BETWEEN
‘1995-09-01’ AND ‘1995-10-01’
σ
π

agg

100 * SUM(CASE
 WHEN type LIKE ‘PROMO%’
 THEN extendedprice*(1-discount)
 ELSE 0
END) / SUM(extendedprice*(1-discount))

γ

lineitem

SCANpart

SCAN

type,
partkey
π

partkey aggregateUDF

Figure 2: Example UDF query plan for TPC-H query 14.

not satisfy, then the UDF inspects the next selection attribute val-
ues. This continues until either a qualifying tuple if found or end
of data is reached. Pushing down selection to the UDF has two ad-
vantages: (1) the number of UDF output tuples, and consequently
the number of UDF calls are reduced, and (2) we can perform late
materialization by fetching projection attributes only for segments
having at least one tuple qualifying the selection predicates. The
first advantage saves the overhead in each UDF call, while the sec-
ond advantage saves I/O for projection attributes.
Aggregation Pushdown. We can even push down the aggregates
(and group by) to the UDF. The UDF must now do the grouping
and aggregation before outputting any of the tuples. This means
that the UDF must precompute the results when initializing and
then simply return the aggregated result subsequently. The major
benefit of pushing aggregation down the UDF is to dramatically
reduce the number of UDF calls.
Dealing with Join Queries. So far we have considered single ta-
ble queries, i.e. no join conditions. Now let us see how joins are
processed in the presence of Trojan Columns. For queries having
join conditions, we simply push down the scan, selection, and pro-
jection operators to the UDF and let the database do the join. This
works well because the output of UDF can be processed by the
database query executor. Figure 2 shows the UDF query plan for
TPC-H query 14. From the figure we see that the lineitem leaf
is pushed inside the UDF, while the join is still performed outside.
Also note that the query plan in Figure 2 accesses part table us-
ing the standard database access method. This is because part
is much smaller table and it does not pay off to use a UDF for
it. Thus, we see that UDFs can be seamlessly integrated into the
query pipeline. This holds true even for nested queries, e.g. TPC-
H query 8. Alternatively, instead of letting the database executor
process the join, one could think of even pushing down the join to
the UDF. The UDF would then have to access two physical tables
and join them based on the join condition. The advantage would
be that we could have even lesser output tuples (depending on join
selectivity). However, the problem is that we will need to recode
the physical join operators as well as the optimizer logic to pick the
physical join operator. Thus, we see the pros and cons of pushing
too many operators down the UDF. Exploring these in more detail
will be part of a future work.
Where does operator pushdown lead to? In the extreme case, we
can push down the entire SQL query, i.e. all query operators, down
to the UDF. However, this means that the UDF is now responsible
for deciding how to execute a given query. In other words, the UDF
must take care of query optimization as well as execution, making
it a micro-kernel for processing SQL queries. The consequence is

3

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

sc
an
U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad
-U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

selectUDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad
-U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

sc
an
U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad
-U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

selectUDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad
-U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

sc
an
U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN
re
ad
-U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

selectUDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad
-U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

36

37

Example: TPC-H Query 14

Result

shipdate, discount
extendedprice, partkey

shipdate BETWEEN
‘1995-09-01’ AND ‘1995-10-01’
σ
π

agg

100 * SUM(CASE
 WHEN type LIKE ‘PROMO%’
 THEN extendedprice*(1-discount)
 ELSE 0
END) / SUM(extendedprice*(1-discount))

γ

lineitem

SCANpart

SCAN

type,
partkey
π

partkey

Result

shipdate, discount
extendedprice, partkey

shipdate BETWEEN
‘1995-09-01’ AND ‘1995-10-01’
σ
π

agg

100 * SUM(CASE
 WHEN type LIKE ‘PROMO%’
 THEN extendedprice*(1-discount)
 ELSE 0
END) / SUM(extendedprice*(1-discount))

γ

lineitem

SCANpart

SCAN

type,
partkey
π

partkey aggregateUDF

Result

shipdate, discount
extendedprice, partkey

shipdate BETWEEN
‘1995-09-01’ AND ‘1995-10-01’
σ
π

agg

100 * SUM(CASE
 WHEN type LIKE ‘PROMO%’
 THEN extendedprice*(1-discount)
 ELSE 0
END) / SUM(extendedprice*(1-discount))

γ

lineitem

SCANpart

SCAN

type,
partkey
π

partkey

Friday, January 4, 13

Trojan Columns

38

UDF Storage Layer

Query Processor

Relations

Physical Representation

File 1 File 2 File 3 File n....

Application
User

Database

Plug-and-play

Trojan Columns

38

UDF Storage Layer

Query Processor

Relations

Physical Representation

File 1 File 2 File 3 File n....

Application
User

Database

Quick Deployment

Trojan Columns

38

UDF Storage Layer

Query Processor

Relations

Physical Representation

File 1 File 2 File 3 File n....

Application
User

Database

Closed-source

Trojan Columns

38

UDF Storage Layer

Query Processor

Relations

Physical Representation

File 1 File 2 File 3 File n....

Application
User

Database

Will this work?

Experimental Setup

Three variants of TPC-H benchmark:  

Commercial closed-source Row-store (Standard Row)

Trojan Columns in commercial closed-source
Row-store (Trojan Columns)

1. simplified queries , simplified dataset
2. simplified queries , original dataset
3. original queries , original dataset

#Q Row UDF SP CTables
qnb1
qnb2
qnb3
qnb4
qnb5
qnb6
qnb7

229.8306 17.28415 18.14766
230.3591 19.45795 19.50107
233.8478 27.59585 24.49931
289.4975 405.8466 345.8437
274.0984 236.1602 241.8309
301.0474 413.1914 358.7857
365.2108 1418.482 1920.728

#Q Row UDF SP CTables
qnb1
qnb2
qnb3
qnb4
qnb5
qnb6
qnb7

87.67472 11.98881
87.75437 14.9901
89.62153 19.97205
182.0698 214.1835
98.44627 99.12788
201.2827 198.2128
169.0723 1890.123

#Q Row UDF SP CTables
qsnb1
qsnb2
qsnb3
qsnb4
qsnb5
qsnb6
qsnb7

86.65741 17.2841491 11.93774 1.870134
87.70732 19.4579537 14.9807 35.4904
88.98537 27.59585 19.2472 3126.133
53.31954 17.65543 18.08066 5635.36
52.6585 19.71123 18.92309 42.51629
57.41684 29.68269 26.09723 51910.05
38.16335 22.44684 23.50066 364.2986

#Q Row UDF SP CTables
qsnb1
qsnb2
qsnb3
qsnb4
qsnb5
qsnb6
qsnb7

84.98788 11.73531 1.870134
84.99943 14.9807 35.4904
86.81531 19.2472 3126.133
53.78619 17.77678 5635.36
54.15577682 18.92309 42.51629
58.82072 26.09723 51910.05
37.9362 23.50066 364.2986

#Q Row UDF SP CTables
Q1
Q5
Q6
Q10
Q12
Q14
Q19

230.1909 57.88195 57.00197
299.1871 508.0337 504.5149
232.7671 25.95971 31.02864
332.8099 358.3929 336.6745
277.4581 111.9957 122.7164
243.6229 92.36434 179.0548
237.42257 129.345887 231.6202

#Q SP1 SP2 SP3 SP4 Row1 Row2 Row3 Row4 UDF1 UDF3 SP Improvement Row Improvement SP Over Row UDF Over Row
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Average

6.049218 3.99627 3.979247 3.91177 76.610197 29.224907 28.885804 28.3293 5.761383 5.761383 1.54641450317317 2.70427504012379 7.2 4.9
6.500357 4.996701 4.993567 4.993567 76.786365 29.251457 29.235774 28.3331 6.4859846 6.4859846 1.30174621525613 2.71012504903531 5.7 4.4
8.166438 6.65735 6.415735 6.415735 77.949255 29.873844 29.661791 28.9384 9.1986176 9.1986176 1.27287645668418 2.69362360139779 4.5 3.1
115.2812 71.39452 6.026886 5.925594 96.499163 60.689942 17.773179 17.9287 135.28219 5.8851449 19.454796468212 5.38237556348034 3 3
80.61028 33.04263 6.307697 6.307697 91.366148 32.815423 17.552832 18.0519 78.720073 6.5704091 12.7796695554697 5.06129652327357 2.9 2.7
119.5952 66.07094 8.699078 8.699078 100.34913 67.094243 19.138945 19.6069 137.73047 9.89423 13.7480360153004 5.11804966848521 2.3 2
640.2426 630.0412 7.833554 7.833554 121.73695 56.357448 12.721117 12.6454 472.82738 7.4822793 81.7307954771259 9.62697542821979 1.6 1.7
139.4922 116.5999 6.322252 6.298142 91.613886 43.615323 22.138492 21.9763 120.85801 7.3254355 18.8334763844602 4.75667441057369 3.9 3.1

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Ru
nt

im
e

(s
ec

)

Stage 1 Stage 2 Stage 3 Stage 4

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Ru
nt

im
e

(s
ec

)

Stage 1 Stage 2 Stage 3 Stage 4

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

Column Row

#Q Row SP Improvement Factor
Q1
Q2
Q3
Q4
Q5
Q6
Q7

76.7303 19.00066 4.03829689442592
99.72904 168.1716 0.593019363330949
77.58903 10.34288 7.50168462355436
110.9366 112.2248 0.988521365413824
92.48604 40.90545 2.26097083569539
81.20765 59.68494 1.36060536289681
79.14086 77.20672 1.02505138993445

#Q Row SP Improvement Factor
Q1
Q2
Q3
Q4
Q5
Q6
Q7

76.6102 3.91177 19.5845332992439
76.78636 4.993567 15.3770576679435
77.94926 6.415735 12.1497000262355
96.49916 5.925594 16.2851466795314
91.36615 6.307697 14.4848662938839
100.3491 8.699078 11.5356054204958
121.7369 7.833554 15.5404496269874

0

30

60

90

120

150

180

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row SP

0

30

60

90

120

150

180

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row SP

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

0

10

20

30

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

(a) Simplified queries, Simplified dataset

#Q Row UDF SP CTables
qnb1
qnb2
qnb3
qnb4
qnb5
qnb6
qnb7

229.8306 17.28415 18.14766
230.3591 19.45795 19.50107
233.8478 27.59585 24.49931
289.4975 405.8466 345.8437
274.0984 236.1602 241.8309
301.0474 413.1914 358.7857
365.2108 1418.482 1920.728

#Q Row UDF SP CTables
qnb1
qnb2
qnb3
qnb4
qnb5
qnb6
qnb7

87.67472 11.98881
87.75437 14.9901
89.62153 19.97205
182.0698 214.1835
98.44627 99.12788
201.2827 198.2128
169.0723 1890.123

#Q Row UDF SP CTables
qsnb1
qsnb2
qsnb3
qsnb4
qsnb5
qsnb6
qsnb7

86.65741 17.2841491 11.93774 1.870134
87.70732 19.4579537 14.9807 35.4904
88.98537 27.59585 19.2472 3126.133
53.31954 17.65543 18.08066 5635.36
52.6585 19.71123 18.92309 42.51629
57.41684 29.68269 26.09723 51910.05
38.16335 22.44684 23.50066 364.2986

#Q Row UDF SP CTables
qsnb1
qsnb2
qsnb3
qsnb4
qsnb5
qsnb6
qsnb7

84.98788 11.73531 1.870134
84.99943 14.9807 35.4904
86.81531 19.2472 3126.133
53.78619 17.77678 5635.36
54.15577682 18.92309 42.51629
58.82072 26.09723 51910.05
37.9362 23.50066 364.2986

#Q Row UDF SP CTables
Q1
Q5
Q6
Q10
Q12
Q14
Q19

230.1909 57.88195 57.00197
299.1871 508.0337 504.5149
232.7671 25.95971 31.02864
332.8099 358.3929 336.6745
277.4581 111.9957 122.7164
243.6229 92.36434 179.0548
237.42257 129.345887 231.6202

#Q SP1 SP2 SP3 SP4 Row1 Row2 Row3 Row4 UDF1 UDF3 SP Improvement Row Improvement SP Over Row UDF Over Row
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Average

6.049218 3.99627 3.979247 3.91177 76.610197 29.224907 28.885804 28.3293 5.761383 5.761383 1.54641450317317 2.70427504012379 7.2 4.9
6.500357 4.996701 4.993567 4.993567 76.786365 29.251457 29.235774 28.3331 6.4859846 6.4859846 1.30174621525613 2.71012504903531 5.7 4.4
8.166438 6.65735 6.415735 6.415735 77.949255 29.873844 29.661791 28.9384 9.1986176 9.1986176 1.27287645668418 2.69362360139779 4.5 3.1
115.2812 71.39452 6.026886 5.925594 96.499163 60.689942 17.773179 17.9287 135.28219 5.8851449 19.454796468212 5.38237556348034 3 3
80.61028 33.04263 6.307697 6.307697 91.366148 32.815423 17.552832 18.0519 78.720073 6.5704091 12.7796695554697 5.06129652327357 2.9 2.7
119.5952 66.07094 8.699078 8.699078 100.34913 67.094243 19.138945 19.6069 137.73047 9.89423 13.7480360153004 5.11804966848521 2.3 2
640.2426 630.0412 7.833554 7.833554 121.73695 56.357448 12.721117 12.6454 472.82738 7.4822793 81.7307954771259 9.62697542821979 1.6 1.7
139.4922 116.5999 6.322252 6.298142 91.613886 43.615323 22.138492 21.9763 120.85801 7.3254355 18.8334763844602 4.75667441057369 3.9 3.1

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Ru
nt

im
e

(s
ec

)

Stage 1 Stage 2 Stage 3 Stage 4

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Ru
nt

im
e

(s
ec

)

Stage 1 Stage 2 Stage 3 Stage 4

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

Column Row

#Q Row SP Improvement Factor
Q1
Q2
Q3
Q4
Q5
Q6
Q7

76.7303 19.00066 4.03829689442592
99.72904 168.1716 0.593019363330949
77.58903 10.34288 7.50168462355436
110.9366 112.2248 0.988521365413824
92.48604 40.90545 2.26097083569539
81.20765 59.68494 1.36060536289681
79.14086 77.20672 1.02505138993445

#Q Row SP UDF Improvement Factor
Q1
Q2
Q3
Q4
Q5
Q6
Q7

76.6102 3.91177 5.761383 19.5845332992439
76.78636 4.993567 6.485985 15.3770576679435
77.94926 6.415735 9.198618 12.1497000262355
96.49916 5.925594 135.2822 16.2851466795314
91.36615 6.307697 78.72007 14.4848662938839
100.3491 8.699078 137.7305 11.5356054204958
121.7369 7.833554 472.8274 15.5404496269874

0

30

60

90

120

150

180

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row SP

0

30

60

90

120

150

180

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row SP

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

0

10

20

30

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

0

125

250

375

500

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

(b) Simplified queries, Unmodified dataset

Standard Row Trojan Columns Trojan Columns (SP)

Lineitem
Orders
Part
customer
partsupp
supplier
nation
region

771.41172 1451.3873 365.11702086
484.01618 369.97302
100.43459 59.400493
89.459029 ***
401.02168 ***
10.144428 ***
5.5904746 ***
5.8037666 ***

0

375

750

1125

1500

Lineitem Orders Part

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

Standard Row Trojan Columns Trojan Columns (SP) Standard Row Trojan Columns Trojan Columns (O) Trojan Columns (SP) Factor Factor

Q1
Q6
Q12
Q14
Q3
Q5
Q10
Q19
Q2
Q4
Q8
Q15
Q17

76.730296 19.293983 24.208052774 230.19089 57.881948 72.62415832 3.977 3.17
77.589034 8.6532381 11.235220175 232.7671 25.959714 33.70566052 8.966 6.906
92.486038 37.331905 40.598335758 277.45811 111.99572 121.7950073 2.477 2.278
81.207649 30.788114 59.597473787 243.62295 92.364343 178.7924214 2.638 1.363
111.88261 809.38127 335.64782 2428.1438 0.138
99.729039 169.34457 299.18712 508.0337 0.589
110.93664 119.46429 332.80993 358.39288 0.929
79.140857 43.115296 237.42257 129.34589 227.3616356 1.836
0 0
110.75535 0 332.26604
97.387131 97.664365 292.16139 292.9931 0.997
80.508382 66.914039 241.52515 200.74212 1.203
0 0
0 0

0

25

50

75

100

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

0

35

70

105

140

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns (UDF)
Trojan Columns (SP)

(c) Unmodified queries, Unmodified dataset

Figure 3: Comparing TPC-H Query Runtimes of Trojan Columns with Standard Row in DBMS-X.

vious section. We also tried nested (and unmodified) TPC-H
queries. However, query nesting reduces the benefits of using Tro-
jan Columns. This is because Trojan Columns only improves the
I/O costs, which is just a fraction of the overall query costs. Apart
from I/O, the remaining query processing costs are still the same as
those for standard row.

4.2 Trojan Columns on Micro-benchmarks
In this section, we evaluate Trojan Columns on a micro-

benchmark. The idea is to understand the pros and cons of Trojan
Columns using simpler single table queries. Our micro-benchmark
consists of queries of the following form over the lineitem table.

SELECT attr_1,attr_2,..,attr_r FROM lineitem
WHERE l_partkey >= lowKey AND l_partkey < highKey;

We vary the selectivity of the above query (by adjusting lowKey
and highKey) as well as the number of projected attributes. Figure 4
shows the improvement factor of Trojan Columns over standard
row when varying the number of referenced attributes from 1 to
16, and selectivity from 10�6 to 1.

qa16 71.60011 71.74058 72.41696 74.32579 98.73742 322.3892 2491.637
qa15 33.04871 33.11921 33.54528 35.75 59.49115 279.758 2458.112
qa13 30.5564 30.62711 30.92837 33.24232 56.71105 269.9108 2420.362
qa11 26.41372 26.24167 26.68348 29.14089 53.20931 272.8816 2602.132
qa9 23.90317 23.89993 24.38536 26.48005 49.15689 280.7952 2555.326
qa7 21.97541 21.94776 22.44053 24.47841 48.20631 275.0487 2492.356
qa5 13.94277 14.02303 14.47728 16.47504 40.9869 266.2783 2562.701
qa3 11.87712 11.26811 11.59191 13.83992 36.73721 272.6078 2580.75
qa1 8.781504 8.675566 9.206705 11.29272 34.80775 267.7441 2606.762
0 qs6 qs5 qs4 qs3 qs2 qs1 qs0

qa16 152.6776 152.6776 152.6268 152.7685 152.9608 152.7476 152.7678
qa15 153.385 152.8995 152.7691 152.6166 152.7179 152.6566 153.0205
qa13 152.8888 153.2741 152.8284 153.1116 153.1723 152.8181 152.8595
qa11 152.8289 152.6875 153.4154 152.7188 152.8187 152.7271 152.8885
qa9 152.8593 152.5857 152.4958 153.3135 152.7388 152.6467 152.7074
qa7 153.8692 152.6672 152.6966 152.5147 152.8193 152.8088 152.8496
qa5 152.769 153.4248 152.7179 152.6675 153.5663 152.748 152.7384
qa3 152.6876 152.8791 153.2124 152.6269 152.718 152.779 152.7682
qa1 153.0306 152.7988 152.9599 153.2835 152.7586 152.8184 152.7484
0 qs6 qs5 qs4 qs3 qs2 qs1 qs0

16 2.13 2.13 2.11 2.06 1.55 0.47 0.06
15 4.64 4.62 4.55 4.27 2.57 0.55 0.06
13 5.00 5.00 4.94 4.61 2.70 0.57 0.06
11 5.79 5.82 5.75 5.24 2.87 0.56 0.06
9 6.39 6.38 6.25 5.79 3.11 0.54 0.06
7 7.00 6.96 6.80 6.23 3.17 0.56 0.06
5 10.96 10.94 10.55 9.27 3.75 0.57 0.06
3 12.86 13.57 13.22 11.03 4.16 0.56 0.06
1 17.43 17.61 16.61 13.57 4.39 0.57 0.06

1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E+00

selectivity (fraction of tuples accessed)

re

fe
re

nc
ed

 a
ttr

ib
ut

es
 (r

)

Figure 4: Trojan Columns improvement factor in DBMS X.

From the figure, we see that Trojan Columns has a maximum im-
provement factor of over 17 (lower left region). Also, we see that
for low selectivities (� 0.1) Trojan Columns performs worse than
standard row. To investigate this, we break down the query runtime
into data access, data processing (decompression, operator evalua-
tion etc.), and data output costs. Our results showed that data output
costs dominate (as high as 60�80%) the query runtime for low se-
lectivity queries. This is because each call to the UDF interface has
some overhead: the lower the selectivity, the more function calls,
the higher the overhead. These function call overheads overshadow
the performance improvements of Trojan Columns for low selectiv-
ities. In principal, this overhead could be removed if the database
storage interface were available in LLVM bitcode. Then the UDF
query could at runtime be dynamically recompiled together with
the DBMS storage layer to remove that boundary and bake the UDF
into the kernel. This remains an interesting avenue for future work.

However, overall even for medium sized selectivites the perfor-
mance gains of Trojan Columns are tremendous.

4.3 How far are Trojan Columns?

4.3.1 Comparison with Materialized Views
The focus of Trojan Columns in this paper is to improve query

I/O cost. However, as mentioned before, I/O is just a fraction of the
total query costs. Since the database system is unaware of the col-
umn store inside, the query processing costs remain the same out-
side the UDF. To better understand the impact of Trojan Columns,
let us now see the query times inside the subquery. To do so, we
measure just the time to compute the subquery computed by the
read-UDF using (1) Standard Row, (2) Trojan Columns, and (3) a
Materialized View perfectly matching the query expression.

Figure 5(a) shows the results. We can see that Trojan Columns
is significantly better (factor 5 on average) than standard row. Fur-
thermore, we also see that except for Q14 Trojan Columns actually
outperforms Materialized Views by a factor of up to 2.5. This is
because Trojan Columns benefits from efficient column-oriented
compression. Query Q14 has the lowest selectivity (1.25%) among
these four queries, and therefore Trojan Columns does not perform
as well as Materialized Views. This is a very good result consider-
ing that Materialized Views require ⇠12GB of storage in this ex-
periment, whereas Trojan Columns only requires ⇠5GB. Still, the
performance of Trojan Columns is very close to Materialized Views
for Q14. We conclude that Trojan Columns provides considerable
improvements in terms of I/O costs. Furthermore, we see Trojan
Columns as a method that improves over Materialised Views, i.e. a
better way of storing and accessing query subexpressions.

4.3.2 Comparison with Column Stores
Trojan Columns allows users to use their existing row-oriented

database system for efficiently supporting analytical workloads as
well, i.e. bridge the huge gap between row stores and column
stores. Thus, it would be interesting to see how far are Trojan
Columns from a full blown column store. To do so, we run un-
modified TPC-H queries on Trojan Columns as well as on a top
notch commercial column-oriented database system DBMS-Y.

Figure 5(b) shows the results. We can see that while Trojan
Columns are slower than DBMS-Y for Q12 and Q14 (by a factor
of 1.3 and 1.4 respectively), Trojan Columns are in fact faster than
DBMS-Y for Q1 and Q6 (by a factor of 1.6 and 3 respectively).
This is because Trojan Column push down even the aggregation
operator to the data access layer for Q1 and Q6. Overall, we see
that Trojan Columns are quite competitive to a full blown column-
oriented database system and can achieve comparable query per-
formance in the same row-oriented database system.

5. DISCUSSION
Trojan Column Benefits. From the above experiments, we see that
Trojan Columns significantly improves the performance of DBMS-
X. This is because Trojan Columns can successfully emulate a col-
umn store without any overhead that typically exists in full vertical

5

Simplified Queries, Simplified Dataset *

41* Mike Stonebraker et. al. C-Store: A Column Oriented DBMS. VLDB 2005

#Q Row UDF SP CTables
qnb1
qnb2
qnb3
qnb4
qnb5
qnb6
qnb7

229.8306 17.28415 18.14766
230.3591 19.45795 19.50107
233.8478 27.59585 24.49931
289.4975 405.8466 345.8437
274.0984 236.1602 241.8309
301.0474 413.1914 358.7857
365.2108 1418.482 1920.728

#Q Row UDF SP CTables
qnb1
qnb2
qnb3
qnb4
qnb5
qnb6
qnb7

87.67472 11.98881
87.75437 14.9901
89.62153 19.97205
182.0698 214.1835
98.44627 99.12788
201.2827 198.2128
169.0723 1890.123

#Q Row UDF SP CTables
qsnb1
qsnb2
qsnb3
qsnb4
qsnb5
qsnb6
qsnb7

86.65741 17.2841491 11.93774 1.870134
87.70732 19.4579537 14.9807 35.4904
88.98537 27.59585 19.2472 3126.133
53.31954 17.65543 18.08066 5635.36
52.6585 19.71123 18.92309 42.51629
57.41684 29.68269 26.09723 51910.05
38.16335 22.44684 23.50066 364.2986

#Q Row UDF SP CTables
qsnb1
qsnb2
qsnb3
qsnb4
qsnb5
qsnb6
qsnb7

84.98788 11.73531 1.870134
84.99943 14.9807 35.4904
86.81531 19.2472 3126.133
53.78619 17.77678 5635.36
54.15577682 18.92309 42.51629
58.82072 26.09723 51910.05
37.9362 23.50066 364.2986

#Q Row UDF SP CTables
Q1
Q5
Q6
Q10
Q12
Q14
Q19

230.1909 57.88195 57.00197
299.1871 508.0337 504.5149
232.7671 25.95971 31.02864
332.8099 358.3929 336.6745
277.4581 111.9957 122.7164
243.6229 92.36434 179.0548
237.42257 129.345887 231.6202

#Q SP1 SP2 SP3 SP4 Row1 Row2 Row3 Row4 UDF1 UDF3 SP Improvement Row Improvement SP Over Row UDF Over Row
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Average

6.049218 3.99627 3.979247 3.91177 76.610197 29.224907 28.885804 28.3293 5.761383 5.761383 1.54641450317317 2.70427504012379 7.2 4.9
6.500357 4.996701 4.993567 4.993567 76.786365 29.251457 29.235774 28.3331 6.4859846 6.4859846 1.30174621525613 2.71012504903531 5.7 4.4
8.166438 6.65735 6.415735 6.415735 77.949255 29.873844 29.661791 28.9384 9.1986176 9.1986176 1.27287645668418 2.69362360139779 4.5 3.1
115.2812 71.39452 6.026886 5.925594 96.499163 60.689942 17.773179 17.9287 135.28219 5.8851449 19.454796468212 5.38237556348034 3 3
80.61028 33.04263 6.307697 6.307697 91.366148 32.815423 17.552832 18.0519 78.720073 6.5704091 12.7796695554697 5.06129652327357 2.9 2.7
119.5952 66.07094 8.699078 8.699078 100.34913 67.094243 19.138945 19.6069 137.73047 9.89423 13.7480360153004 5.11804966848521 2.3 2
640.2426 630.0412 7.833554 7.833554 121.73695 56.357448 12.721117 12.6454 472.82738 7.4822793 81.7307954771259 9.62697542821979 1.6 1.7
139.4922 116.5999 6.322252 6.298142 91.613886 43.615323 22.138492 21.9763 120.85801 7.3254355 18.8334763844602 4.75667441057369 3.9 3.1

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Ru
nt

im
e

(s
ec

)

Stage 1 Stage 2 Stage 3 Stage 4

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Ru
nt

im
e

(s
ec

)

Stage 1 Stage 2 Stage 3 Stage 4

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

Column Row

#Q Row SP Improvement Factor
Q1
Q2
Q3
Q4
Q5
Q6
Q7

76.7303 19.00066 4.03829689442592
99.72904 168.1716 0.593019363330949
77.58903 10.34288 7.50168462355436
110.9366 112.2248 0.988521365413824
92.48604 40.90545 2.26097083569539
81.20765 59.68494 1.36060536289681
79.14086 77.20672 1.02505138993445

#Q Row SP Improvement Factor
Q1
Q2
Q3
Q4
Q5
Q6
Q7

76.6102 3.91177 19.5845332992439
76.78636 4.993567 15.3770576679435
77.94926 6.415735 12.1497000262355
96.49916 5.925594 16.2851466795314
91.36615 6.307697 14.4848662938839
100.3491 8.699078 11.5356054204958
121.7369 7.833554 15.5404496269874

0

30

60

90

120

150

180

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row SP

0

30

60

90

120

150

180

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row SP

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

0

10

20

30

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

(a) Simplified queries, Simplified dataset

#Q Row UDF SP CTables
qnb1
qnb2
qnb3
qnb4
qnb5
qnb6
qnb7

229.8306 17.28415 18.14766
230.3591 19.45795 19.50107
233.8478 27.59585 24.49931
289.4975 405.8466 345.8437
274.0984 236.1602 241.8309
301.0474 413.1914 358.7857
365.2108 1418.482 1920.728

#Q Row UDF SP CTables
qnb1
qnb2
qnb3
qnb4
qnb5
qnb6
qnb7

87.67472 11.98881
87.75437 14.9901
89.62153 19.97205
182.0698 214.1835
98.44627 99.12788
201.2827 198.2128
169.0723 1890.123

#Q Row UDF SP CTables
qsnb1
qsnb2
qsnb3
qsnb4
qsnb5
qsnb6
qsnb7

86.65741 17.2841491 11.93774 1.870134
87.70732 19.4579537 14.9807 35.4904
88.98537 27.59585 19.2472 3126.133
53.31954 17.65543 18.08066 5635.36
52.6585 19.71123 18.92309 42.51629
57.41684 29.68269 26.09723 51910.05
38.16335 22.44684 23.50066 364.2986

#Q Row UDF SP CTables
qsnb1
qsnb2
qsnb3
qsnb4
qsnb5
qsnb6
qsnb7

84.98788 11.73531 1.870134
84.99943 14.9807 35.4904
86.81531 19.2472 3126.133
53.78619 17.77678 5635.36
54.15577682 18.92309 42.51629
58.82072 26.09723 51910.05
37.9362 23.50066 364.2986

#Q Row UDF SP CTables
Q1
Q5
Q6
Q10
Q12
Q14
Q19

230.1909 57.88195 57.00197
299.1871 508.0337 504.5149
232.7671 25.95971 31.02864
332.8099 358.3929 336.6745
277.4581 111.9957 122.7164
243.6229 92.36434 179.0548
237.42257 129.345887 231.6202

#Q SP1 SP2 SP3 SP4 Row1 Row2 Row3 Row4 UDF1 UDF3 SP Improvement Row Improvement SP Over Row UDF Over Row
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Average

6.049218 3.99627 3.979247 3.91177 76.610197 29.224907 28.885804 28.3293 5.761383 5.761383 1.54641450317317 2.70427504012379 7.2 4.9
6.500357 4.996701 4.993567 4.993567 76.786365 29.251457 29.235774 28.3331 6.4859846 6.4859846 1.30174621525613 2.71012504903531 5.7 4.4
8.166438 6.65735 6.415735 6.415735 77.949255 29.873844 29.661791 28.9384 9.1986176 9.1986176 1.27287645668418 2.69362360139779 4.5 3.1
115.2812 71.39452 6.026886 5.925594 96.499163 60.689942 17.773179 17.9287 135.28219 5.8851449 19.454796468212 5.38237556348034 3 3
80.61028 33.04263 6.307697 6.307697 91.366148 32.815423 17.552832 18.0519 78.720073 6.5704091 12.7796695554697 5.06129652327357 2.9 2.7
119.5952 66.07094 8.699078 8.699078 100.34913 67.094243 19.138945 19.6069 137.73047 9.89423 13.7480360153004 5.11804966848521 2.3 2
640.2426 630.0412 7.833554 7.833554 121.73695 56.357448 12.721117 12.6454 472.82738 7.4822793 81.7307954771259 9.62697542821979 1.6 1.7
139.4922 116.5999 6.322252 6.298142 91.613886 43.615323 22.138492 21.9763 120.85801 7.3254355 18.8334763844602 4.75667441057369 3.9 3.1

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Ru
nt

im
e

(s
ec

)

Stage 1 Stage 2 Stage 3 Stage 4

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Ru
nt

im
e

(s
ec

)

Stage 1 Stage 2 Stage 3 Stage 4

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

Column Row

#Q Row SP Improvement Factor
Q1
Q2
Q3
Q4
Q5
Q6
Q7

76.7303 19.00066 4.03829689442592
99.72904 168.1716 0.593019363330949
77.58903 10.34288 7.50168462355436
110.9366 112.2248 0.988521365413824
92.48604 40.90545 2.26097083569539
81.20765 59.68494 1.36060536289681
79.14086 77.20672 1.02505138993445

#Q Row SP UDF Improvement Factor
Q1
Q2
Q3
Q4
Q5
Q6
Q7

76.6102 3.91177 5.761383 19.5845332992439
76.78636 4.993567 6.485985 15.3770576679435
77.94926 6.415735 9.198618 12.1497000262355
96.49916 5.925594 135.2822 16.2851466795314
91.36615 6.307697 78.72007 14.4848662938839
100.3491 8.699078 137.7305 11.5356054204958
121.7369 7.833554 472.8274 15.5404496269874

0

30

60

90

120

150

180

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row SP

0

30

60

90

120

150

180

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row SP

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

0

10

20

30

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

0

125

250

375

500

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

(b) Simplified queries, Unmodified dataset

Standard Row Trojan Columns Trojan Columns (SP)

Lineitem
Orders
Part
customer
partsupp
supplier
nation
region

771.41172 1451.3873 365.11702086
484.01618 369.97302
100.43459 59.400493
89.459029 ***
401.02168 ***
10.144428 ***
5.5904746 ***
5.8037666 ***

0

375

750

1125

1500

Lineitem Orders Part

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

Standard Row Trojan Columns Trojan Columns (SP) Standard Row Trojan Columns Trojan Columns (O) Trojan Columns (SP) Factor Factor

Q1
Q6
Q12
Q14
Q3
Q5
Q10
Q19
Q2
Q4
Q8
Q15
Q17

76.730296 19.293983 24.208052774 230.19089 57.881948 72.62415832 3.977 3.17
77.589034 8.6532381 11.235220175 232.7671 25.959714 33.70566052 8.966 6.906
92.486038 37.331905 40.598335758 277.45811 111.99572 121.7950073 2.477 2.278
81.207649 30.788114 59.597473787 243.62295 92.364343 178.7924214 2.638 1.363
111.88261 809.38127 335.64782 2428.1438 0.138
99.729039 169.34457 299.18712 508.0337 0.589
110.93664 119.46429 332.80993 358.39288 0.929
79.140857 43.115296 237.42257 129.34589 227.3616356 1.836
0 0
110.75535 0 332.26604
97.387131 97.664365 292.16139 292.9931 0.997
80.508382 66.914039 241.52515 200.74212 1.203
0 0
0 0

0

25

50

75

100

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

0

35

70

105

140

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns (UDF)
Trojan Columns (SP)

(c) Unmodified queries, Unmodified dataset

Figure 3: Comparing TPC-H Query Runtimes of Trojan Columns with Standard Row in DBMS-X.

vious section. We also tried nested (and unmodified) TPC-H
queries. However, query nesting reduces the benefits of using Tro-
jan Columns. This is because Trojan Columns only improves the
I/O costs, which is just a fraction of the overall query costs. Apart
from I/O, the remaining query processing costs are still the same as
those for standard row.

4.2 Trojan Columns on Micro-benchmarks
In this section, we evaluate Trojan Columns on a micro-

benchmark. The idea is to understand the pros and cons of Trojan
Columns using simpler single table queries. Our micro-benchmark
consists of queries of the following form over the lineitem table.

SELECT attr_1,attr_2,..,attr_r FROM lineitem
WHERE l_partkey >= lowKey AND l_partkey < highKey;

We vary the selectivity of the above query (by adjusting lowKey
and highKey) as well as the number of projected attributes. Figure 4
shows the improvement factor of Trojan Columns over standard
row when varying the number of referenced attributes from 1 to
16, and selectivity from 10�6 to 1.

qa16 71.60011 71.74058 72.41696 74.32579 98.73742 322.3892 2491.637
qa15 33.04871 33.11921 33.54528 35.75 59.49115 279.758 2458.112
qa13 30.5564 30.62711 30.92837 33.24232 56.71105 269.9108 2420.362
qa11 26.41372 26.24167 26.68348 29.14089 53.20931 272.8816 2602.132
qa9 23.90317 23.89993 24.38536 26.48005 49.15689 280.7952 2555.326
qa7 21.97541 21.94776 22.44053 24.47841 48.20631 275.0487 2492.356
qa5 13.94277 14.02303 14.47728 16.47504 40.9869 266.2783 2562.701
qa3 11.87712 11.26811 11.59191 13.83992 36.73721 272.6078 2580.75
qa1 8.781504 8.675566 9.206705 11.29272 34.80775 267.7441 2606.762
0 qs6 qs5 qs4 qs3 qs2 qs1 qs0

qa16 152.6776 152.6776 152.6268 152.7685 152.9608 152.7476 152.7678
qa15 153.385 152.8995 152.7691 152.6166 152.7179 152.6566 153.0205
qa13 152.8888 153.2741 152.8284 153.1116 153.1723 152.8181 152.8595
qa11 152.8289 152.6875 153.4154 152.7188 152.8187 152.7271 152.8885
qa9 152.8593 152.5857 152.4958 153.3135 152.7388 152.6467 152.7074
qa7 153.8692 152.6672 152.6966 152.5147 152.8193 152.8088 152.8496
qa5 152.769 153.4248 152.7179 152.6675 153.5663 152.748 152.7384
qa3 152.6876 152.8791 153.2124 152.6269 152.718 152.779 152.7682
qa1 153.0306 152.7988 152.9599 153.2835 152.7586 152.8184 152.7484
0 qs6 qs5 qs4 qs3 qs2 qs1 qs0

16 2.13 2.13 2.11 2.06 1.55 0.47 0.06
15 4.64 4.62 4.55 4.27 2.57 0.55 0.06
13 5.00 5.00 4.94 4.61 2.70 0.57 0.06
11 5.79 5.82 5.75 5.24 2.87 0.56 0.06
9 6.39 6.38 6.25 5.79 3.11 0.54 0.06
7 7.00 6.96 6.80 6.23 3.17 0.56 0.06
5 10.96 10.94 10.55 9.27 3.75 0.57 0.06
3 12.86 13.57 13.22 11.03 4.16 0.56 0.06
1 17.43 17.61 16.61 13.57 4.39 0.57 0.06

1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E+00

selectivity (fraction of tuples accessed)

re

fe
re

nc
ed

 a
ttr

ib
ut

es
 (r

)

Figure 4: Trojan Columns improvement factor in DBMS X.

From the figure, we see that Trojan Columns has a maximum im-
provement factor of over 17 (lower left region). Also, we see that
for low selectivities (� 0.1) Trojan Columns performs worse than
standard row. To investigate this, we break down the query runtime
into data access, data processing (decompression, operator evalua-
tion etc.), and data output costs. Our results showed that data output
costs dominate (as high as 60�80%) the query runtime for low se-
lectivity queries. This is because each call to the UDF interface has
some overhead: the lower the selectivity, the more function calls,
the higher the overhead. These function call overheads overshadow
the performance improvements of Trojan Columns for low selectiv-
ities. In principal, this overhead could be removed if the database
storage interface were available in LLVM bitcode. Then the UDF
query could at runtime be dynamically recompiled together with
the DBMS storage layer to remove that boundary and bake the UDF
into the kernel. This remains an interesting avenue for future work.

However, overall even for medium sized selectivites the perfor-
mance gains of Trojan Columns are tremendous.

4.3 How far are Trojan Columns?

4.3.1 Comparison with Materialized Views
The focus of Trojan Columns in this paper is to improve query

I/O cost. However, as mentioned before, I/O is just a fraction of the
total query costs. Since the database system is unaware of the col-
umn store inside, the query processing costs remain the same out-
side the UDF. To better understand the impact of Trojan Columns,
let us now see the query times inside the subquery. To do so, we
measure just the time to compute the subquery computed by the
read-UDF using (1) Standard Row, (2) Trojan Columns, and (3) a
Materialized View perfectly matching the query expression.

Figure 5(a) shows the results. We can see that Trojan Columns
is significantly better (factor 5 on average) than standard row. Fur-
thermore, we also see that except for Q14 Trojan Columns actually
outperforms Materialized Views by a factor of up to 2.5. This is
because Trojan Columns benefits from efficient column-oriented
compression. Query Q14 has the lowest selectivity (1.25%) among
these four queries, and therefore Trojan Columns does not perform
as well as Materialized Views. This is a very good result consider-
ing that Materialized Views require ⇠12GB of storage in this ex-
periment, whereas Trojan Columns only requires ⇠5GB. Still, the
performance of Trojan Columns is very close to Materialized Views
for Q14. We conclude that Trojan Columns provides considerable
improvements in terms of I/O costs. Furthermore, we see Trojan
Columns as a method that improves over Materialised Views, i.e. a
better way of storing and accessing query subexpressions.

4.3.2 Comparison with Column Stores
Trojan Columns allows users to use their existing row-oriented

database system for efficiently supporting analytical workloads as
well, i.e. bridge the huge gap between row stores and column
stores. Thus, it would be interesting to see how far are Trojan
Columns from a full blown column store. To do so, we run un-
modified TPC-H queries on Trojan Columns as well as on a top
notch commercial column-oriented database system DBMS-Y.

Figure 5(b) shows the results. We can see that while Trojan
Columns are slower than DBMS-Y for Q12 and Q14 (by a factor
of 1.3 and 1.4 respectively), Trojan Columns are in fact faster than
DBMS-Y for Q1 and Q6 (by a factor of 1.6 and 3 respectively).
This is because Trojan Column push down even the aggregation
operator to the data access layer for Q1 and Q6. Overall, we see
that Trojan Columns are quite competitive to a full blown column-
oriented database system and can achieve comparable query per-
formance in the same row-oriented database system.

5. DISCUSSION
Trojan Column Benefits. From the above experiments, we see that
Trojan Columns significantly improves the performance of DBMS-
X. This is because Trojan Columns can successfully emulate a col-
umn store without any overhead that typically exists in full vertical

5

Simplified Queries, Simplified Dataset *

41* Mike Stonebraker et. al. C-Store: A Column Oriented DBMS. VLDB 2005

5x

#Q Row UDF SP CTables
qnb1
qnb2
qnb3
qnb4
qnb5
qnb6
qnb7

229.8306 17.28415 18.14766
230.3591 19.45795 19.50107
233.8478 27.59585 24.49931
289.4975 405.8466 345.8437
274.0984 236.1602 241.8309
301.0474 413.1914 358.7857
365.2108 1418.482 1920.728

#Q Row UDF SP CTables
qnb1
qnb2
qnb3
qnb4
qnb5
qnb6
qnb7

87.67472 11.98881
87.75437 14.9901
89.62153 19.97205
182.0698 214.1835
98.44627 99.12788
201.2827 198.2128
169.0723 1890.123

#Q Row UDF SP CTables
qsnb1
qsnb2
qsnb3
qsnb4
qsnb5
qsnb6
qsnb7

86.65741 17.2841491 11.93774 1.870134
87.70732 19.4579537 14.9807 35.4904
88.98537 27.59585 19.2472 3126.133
53.31954 17.65543 18.08066 5635.36
52.6585 19.71123 18.92309 42.51629
57.41684 29.68269 26.09723 51910.05
38.16335 22.44684 23.50066 364.2986

#Q Row UDF SP CTables
qsnb1
qsnb2
qsnb3
qsnb4
qsnb5
qsnb6
qsnb7

84.98788 11.73531 1.870134
84.99943 14.9807 35.4904
86.81531 19.2472 3126.133
53.78619 17.77678 5635.36
54.15577682 18.92309 42.51629
58.82072 26.09723 51910.05
37.9362 23.50066 364.2986

#Q Row UDF SP CTables
Q1
Q5
Q6
Q10
Q12
Q14
Q19

230.1909 57.88195 57.00197
299.1871 508.0337 504.5149
232.7671 25.95971 31.02864
332.8099 358.3929 336.6745
277.4581 111.9957 122.7164
243.6229 92.36434 179.0548
237.42257 129.345887 231.6202

#Q SP1 SP2 SP3 SP4 Row1 Row2 Row3 Row4 UDF1 UDF3 SP Improvement Row Improvement SP Over Row UDF Over Row
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Average

6.049218 3.99627 3.979247 3.91177 76.610197 29.224907 28.885804 28.3293 5.761383 5.761383 1.54641450317317 2.70427504012379 7.2 4.9
6.500357 4.996701 4.993567 4.993567 76.786365 29.251457 29.235774 28.3331 6.4859846 6.4859846 1.30174621525613 2.71012504903531 5.7 4.4
8.166438 6.65735 6.415735 6.415735 77.949255 29.873844 29.661791 28.9384 9.1986176 9.1986176 1.27287645668418 2.69362360139779 4.5 3.1
115.2812 71.39452 6.026886 5.925594 96.499163 60.689942 17.773179 17.9287 135.28219 5.8851449 19.454796468212 5.38237556348034 3 3
80.61028 33.04263 6.307697 6.307697 91.366148 32.815423 17.552832 18.0519 78.720073 6.5704091 12.7796695554697 5.06129652327357 2.9 2.7
119.5952 66.07094 8.699078 8.699078 100.34913 67.094243 19.138945 19.6069 137.73047 9.89423 13.7480360153004 5.11804966848521 2.3 2
640.2426 630.0412 7.833554 7.833554 121.73695 56.357448 12.721117 12.6454 472.82738 7.4822793 81.7307954771259 9.62697542821979 1.6 1.7
139.4922 116.5999 6.322252 6.298142 91.613886 43.615323 22.138492 21.9763 120.85801 7.3254355 18.8334763844602 4.75667441057369 3.9 3.1

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Ru
nt

im
e

(s
ec

)

Stage 1 Stage 2 Stage 3 Stage 4

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Ru
nt

im
e

(s
ec

)

Stage 1 Stage 2 Stage 3 Stage 4

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

Column Row

#Q Row SP Improvement Factor
Q1
Q2
Q3
Q4
Q5
Q6
Q7

76.7303 19.00066 4.03829689442592
99.72904 168.1716 0.593019363330949
77.58903 10.34288 7.50168462355436
110.9366 112.2248 0.988521365413824
92.48604 40.90545 2.26097083569539
81.20765 59.68494 1.36060536289681
79.14086 77.20672 1.02505138993445

#Q Row SP Improvement Factor
Q1
Q2
Q3
Q4
Q5
Q6
Q7

76.6102 3.91177 19.5845332992439
76.78636 4.993567 15.3770576679435
77.94926 6.415735 12.1497000262355
96.49916 5.925594 16.2851466795314
91.36615 6.307697 14.4848662938839
100.3491 8.699078 11.5356054204958
121.7369 7.833554 15.5404496269874

0

30

60

90

120

150

180

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row SP

0

30

60

90

120

150

180

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row SP

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

0

10

20

30

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

(a) Simplified queries, Simplified dataset

#Q Row UDF SP CTables
qnb1
qnb2
qnb3
qnb4
qnb5
qnb6
qnb7

229.8306 17.28415 18.14766
230.3591 19.45795 19.50107
233.8478 27.59585 24.49931
289.4975 405.8466 345.8437
274.0984 236.1602 241.8309
301.0474 413.1914 358.7857
365.2108 1418.482 1920.728

#Q Row UDF SP CTables
qnb1
qnb2
qnb3
qnb4
qnb5
qnb6
qnb7

87.67472 11.98881
87.75437 14.9901
89.62153 19.97205
182.0698 214.1835
98.44627 99.12788
201.2827 198.2128
169.0723 1890.123

#Q Row UDF SP CTables
qsnb1
qsnb2
qsnb3
qsnb4
qsnb5
qsnb6
qsnb7

86.65741 17.2841491 11.93774 1.870134
87.70732 19.4579537 14.9807 35.4904
88.98537 27.59585 19.2472 3126.133
53.31954 17.65543 18.08066 5635.36
52.6585 19.71123 18.92309 42.51629
57.41684 29.68269 26.09723 51910.05
38.16335 22.44684 23.50066 364.2986

#Q Row UDF SP CTables
qsnb1
qsnb2
qsnb3
qsnb4
qsnb5
qsnb6
qsnb7

84.98788 11.73531 1.870134
84.99943 14.9807 35.4904
86.81531 19.2472 3126.133
53.78619 17.77678 5635.36
54.15577682 18.92309 42.51629
58.82072 26.09723 51910.05
37.9362 23.50066 364.2986

#Q Row UDF SP CTables
Q1
Q5
Q6
Q10
Q12
Q14
Q19

230.1909 57.88195 57.00197
299.1871 508.0337 504.5149
232.7671 25.95971 31.02864
332.8099 358.3929 336.6745
277.4581 111.9957 122.7164
243.6229 92.36434 179.0548
237.42257 129.345887 231.6202

#Q SP1 SP2 SP3 SP4 Row1 Row2 Row3 Row4 UDF1 UDF3 SP Improvement Row Improvement SP Over Row UDF Over Row
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Average

6.049218 3.99627 3.979247 3.91177 76.610197 29.224907 28.885804 28.3293 5.761383 5.761383 1.54641450317317 2.70427504012379 7.2 4.9
6.500357 4.996701 4.993567 4.993567 76.786365 29.251457 29.235774 28.3331 6.4859846 6.4859846 1.30174621525613 2.71012504903531 5.7 4.4
8.166438 6.65735 6.415735 6.415735 77.949255 29.873844 29.661791 28.9384 9.1986176 9.1986176 1.27287645668418 2.69362360139779 4.5 3.1
115.2812 71.39452 6.026886 5.925594 96.499163 60.689942 17.773179 17.9287 135.28219 5.8851449 19.454796468212 5.38237556348034 3 3
80.61028 33.04263 6.307697 6.307697 91.366148 32.815423 17.552832 18.0519 78.720073 6.5704091 12.7796695554697 5.06129652327357 2.9 2.7
119.5952 66.07094 8.699078 8.699078 100.34913 67.094243 19.138945 19.6069 137.73047 9.89423 13.7480360153004 5.11804966848521 2.3 2
640.2426 630.0412 7.833554 7.833554 121.73695 56.357448 12.721117 12.6454 472.82738 7.4822793 81.7307954771259 9.62697542821979 1.6 1.7
139.4922 116.5999 6.322252 6.298142 91.613886 43.615323 22.138492 21.9763 120.85801 7.3254355 18.8334763844602 4.75667441057369 3.9 3.1

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Ru
nt

im
e

(s
ec

)

Stage 1 Stage 2 Stage 3 Stage 4

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Ru
nt

im
e

(s
ec

)

Stage 1 Stage 2 Stage 3 Stage 4

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

Column Row

#Q Row SP Improvement Factor
Q1
Q2
Q3
Q4
Q5
Q6
Q7

76.7303 19.00066 4.03829689442592
99.72904 168.1716 0.593019363330949
77.58903 10.34288 7.50168462355436
110.9366 112.2248 0.988521365413824
92.48604 40.90545 2.26097083569539
81.20765 59.68494 1.36060536289681
79.14086 77.20672 1.02505138993445

#Q Row SP UDF Improvement Factor
Q1
Q2
Q3
Q4
Q5
Q6
Q7

76.6102 3.91177 5.761383 19.5845332992439
76.78636 4.993567 6.485985 15.3770576679435
77.94926 6.415735 9.198618 12.1497000262355
96.49916 5.925594 135.2822 16.2851466795314
91.36615 6.307697 78.72007 14.4848662938839
100.3491 8.699078 137.7305 11.5356054204958
121.7369 7.833554 472.8274 15.5404496269874

0

30

60

90

120

150

180

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row SP

0

30

60

90

120

150

180

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row SP

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

0

10

20

30

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

0

125

250

375

500

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

(b) Simplified queries, Unmodified dataset

Standard Row Trojan Columns Trojan Columns (SP)

Lineitem
Orders
Part
customer
partsupp
supplier
nation
region

771.41172 1451.3873 365.11702086
484.01618 369.97302
100.43459 59.400493
89.459029 ***
401.02168 ***
10.144428 ***
5.5904746 ***
5.8037666 ***

0

375

750

1125

1500

Lineitem Orders Part

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

Standard Row Trojan Columns Trojan Columns (SP) Standard Row Trojan Columns Trojan Columns (O) Trojan Columns (SP) Factor Factor

Q1
Q6
Q12
Q14
Q3
Q5
Q10
Q19
Q2
Q4
Q8
Q15
Q17

76.730296 19.293983 24.208052774 230.19089 57.881948 72.62415832 3.977 3.17
77.589034 8.6532381 11.235220175 232.7671 25.959714 33.70566052 8.966 6.906
92.486038 37.331905 40.598335758 277.45811 111.99572 121.7950073 2.477 2.278
81.207649 30.788114 59.597473787 243.62295 92.364343 178.7924214 2.638 1.363
111.88261 809.38127 335.64782 2428.1438 0.138
99.729039 169.34457 299.18712 508.0337 0.589
110.93664 119.46429 332.80993 358.39288 0.929
79.140857 43.115296 237.42257 129.34589 227.3616356 1.836
0 0
110.75535 0 332.26604
97.387131 97.664365 292.16139 292.9931 0.997
80.508382 66.914039 241.52515 200.74212 1.203
0 0
0 0

0

25

50

75

100

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

0

35

70

105

140

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns (UDF)
Trojan Columns (SP)

(c) Unmodified queries, Unmodified dataset

Figure 3: Comparing TPC-H Query Runtimes of Trojan Columns with Standard Row in DBMS-X.

once sufficient number of rows which can fill a segment have been
inserted into the standard row table. At query time, the read-UDF
must also read the temporal row table for newly inserted rows.

Note that the above strategy of a trigger and function call for
every insert might be too expensive for insert intensive applica-
tions. Alternate strategies could be to periodically bulk load Trojan
Columns from the base table or to partition the base table into mul-
tiple tables and create Trojan Columns for each partition indepen-
dently. To handle updates, the update-UDF first needs to determine
the segment in which the update must be applied. Thereafter, the
update-UDF must read the affected blobs in that segment and write
them back.

4. EXPERIMENTS
We implemented Trojan Columns in DBMS-X, a closed source

commercial database system. We ran experiments to see the per-
formance improvements due to Trojan Columns in DBMS-X. We
ran all experiments on a single node with 3.3 GHz Dual Core i3
running 64-bit platform Linux openSuse 12.1 OS, 4x4 GB main
memory, 2 TB 5,400 rpm SATA hard disk. We use cold file system
caches for all our experiments and restart the database, in order to
clear database buffers, before running each query. We repeat each
measurement 3 times and report the average.

In the following, we proceed as follows. First, we evaluate Tro-
jan Columns on TPC-H queries and see the impact. Then, we study
the pros and cons of Trojan Columns using single table micro-
benchmarks. Finally, we see how far are Trojan Columns from
materialized views as well as from a column store database system.

4.1 Trojan Columns on TPC-H queries

4.1.1 Simplified queries, Simplified dataset
In this experiment, we use the simplified TPC-H queries as

proposed in the C-Store paper [12], and also used by other re-
searchers [3]. In addition, we apply the same dataset settings to
Trojan Columns as applied to C-Store in the simplified benchmark,
i.e. we (1) simplify the schema of the tables, (2) exploit prema-
terialized joins (D-tables), and (3) presort the tables to allow for
efficient sort-based grouping and compression. Figure 3(a) shows
the results for scale factor 10. We can see that Trojan Columns
improve over standard row for all queries, with improvements of
almost 5 times for Q1 and 4.4 times for Q2. Even in the worst case
Trojan Columns improve query Q7 by 70%. All this in the same
closed source commercial database DBMS-X.

4.1.2 Simplified queries, Unmodified dataset
Let us now see how the Trojan Columns behave if we apply them

over the above 7 simplified TPC-H queries without making any
dataset/schema changes, i.e. we neither use pre-materialized joins
nor simplify the table schemas or pre-sort the data. Figure 3(b)

shows the results for scale factor 10. From the table we can see that
the improvement factor of Trojan Columns over standard row goes
up to 13.3, 11.84, and 8.47 for Q1, Q2, and Q3 respectively. This
means that Trojan Columns work even better for these queries on
unmodified datasets. However, on the other hand, for queries Q4,
Q6, and Q7, Trojan Columns performs worse than standard row.
Thus, indeed the results change if we do not modify the dataset.
With unmodified datasets, we see that Trojan Columns do not work
very well for low selectivity queries (Q4, Q6, Q7). Before inves-
tigating this further in Section 4.2, let us first see the query per-
formances with unmodified dataset and unmodified TPC-H queries
below.

4.1.3 Unmodified queries, Unmodified dataset
Let us now take four non-nested, high selectivity, (and un-

modified) TPC-H benchmark queries: Q1, Q6, Q12, and Q14.
Figure 3(c) shows the query times for standard row and Trojan
Columns for these four queries on scale factor 10. We can see that
Trojan Columns outperforms standard row over all these queries.
The maximum improvement is by factor 9 for Q6, followed by fac-
tor 4 for Q1, factor 2.6 for Q14, and factor 2.5 for Q12. All this in
the same system (DBMS-X) and without touching the source code.

Next, let us see the query times for non-nested and low selec-
tivity (unmodified) TPC-H queries — Q3, Q5, Q10, and Q19. Ta-
bles 2 show the results.

Query Standard Row Trojan Columns
Q3 111.88 809.38
Q5 99.73 169.34
Q10 110.94 119.46
Q19 79.14 43.12

Table 2: TPC-H query Set 2 runtimes (in seconds).

We can see that, apart from Q19, Trojan Columns does not per-
form very well with low selectivity queries, similar as in the pre-
vious section. We also tried nested (and unmodified) TPC-H
queries. However, query nesting reduces the benefits of using Tro-
jan Columns. This is because Trojan Columns only improves the
I/O costs, which is just a fraction of the overall query costs. Apart
from I/O, the remaining query processing costs are still the same as
those for standard row.

4.2 Trojan Columns on Micro-benchmarks
In this section, we evaluate Trojan Columns on a micro-

benchmark. The idea is to understand the pros and cons of Trojan
Columns using simpler single table queries. Our micro-benchmark
consists of queries of the following form over the lineitem table.

SELECT attr_1,attr_2,..,attr_r FROM lineitem
WHERE l_partkey >= lowKey AND l_partkey < highKey;

Simplified Queries, Original Dataset

42

#Q Row UDF SP CTables
qnb1
qnb2
qnb3
qnb4
qnb5
qnb6
qnb7

229.8306 17.28415 18.14766
230.3591 19.45795 19.50107
233.8478 27.59585 24.49931
289.4975 405.8466 345.8437
274.0984 236.1602 241.8309
301.0474 413.1914 358.7857
365.2108 1418.482 1920.728

#Q Row UDF SP CTables
qnb1
qnb2
qnb3
qnb4
qnb5
qnb6
qnb7

87.67472 11.98881
87.75437 14.9901
89.62153 19.97205
182.0698 214.1835
98.44627 99.12788
201.2827 198.2128
169.0723 1890.123

#Q Row UDF SP CTables
qsnb1
qsnb2
qsnb3
qsnb4
qsnb5
qsnb6
qsnb7

86.65741 17.2841491 11.93774 1.870134
87.70732 19.4579537 14.9807 35.4904
88.98537 27.59585 19.2472 3126.133
53.31954 17.65543 18.08066 5635.36
52.6585 19.71123 18.92309 42.51629
57.41684 29.68269 26.09723 51910.05
38.16335 22.44684 23.50066 364.2986

#Q Row UDF SP CTables
qsnb1
qsnb2
qsnb3
qsnb4
qsnb5
qsnb6
qsnb7

84.98788 11.73531 1.870134
84.99943 14.9807 35.4904
86.81531 19.2472 3126.133
53.78619 17.77678 5635.36
54.15577682 18.92309 42.51629
58.82072 26.09723 51910.05
37.9362 23.50066 364.2986

#Q Row UDF SP CTables
Q1
Q5
Q6
Q10
Q12
Q14
Q19

230.1909 57.88195 57.00197
299.1871 508.0337 504.5149
232.7671 25.95971 31.02864
332.8099 358.3929 336.6745
277.4581 111.9957 122.7164
243.6229 92.36434 179.0548
237.42257 129.345887 231.6202

#Q SP1 SP2 SP3 SP4 Row1 Row2 Row3 Row4 UDF1 UDF3 SP Improvement Row Improvement SP Over Row UDF Over Row
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Average

6.049218 3.99627 3.979247 3.91177 76.610197 29.224907 28.885804 28.3293 5.761383 5.761383 1.54641450317317 2.70427504012379 7.2 4.9
6.500357 4.996701 4.993567 4.993567 76.786365 29.251457 29.235774 28.3331 6.4859846 6.4859846 1.30174621525613 2.71012504903531 5.7 4.4
8.166438 6.65735 6.415735 6.415735 77.949255 29.873844 29.661791 28.9384 9.1986176 9.1986176 1.27287645668418 2.69362360139779 4.5 3.1
115.2812 71.39452 6.026886 5.925594 96.499163 60.689942 17.773179 17.9287 135.28219 5.8851449 19.454796468212 5.38237556348034 3 3
80.61028 33.04263 6.307697 6.307697 91.366148 32.815423 17.552832 18.0519 78.720073 6.5704091 12.7796695554697 5.06129652327357 2.9 2.7
119.5952 66.07094 8.699078 8.699078 100.34913 67.094243 19.138945 19.6069 137.73047 9.89423 13.7480360153004 5.11804966848521 2.3 2
640.2426 630.0412 7.833554 7.833554 121.73695 56.357448 12.721117 12.6454 472.82738 7.4822793 81.7307954771259 9.62697542821979 1.6 1.7
139.4922 116.5999 6.322252 6.298142 91.613886 43.615323 22.138492 21.9763 120.85801 7.3254355 18.8334763844602 4.75667441057369 3.9 3.1

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Ru
nt

im
e

(s
ec

)

Stage 1 Stage 2 Stage 3 Stage 4

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Ru
nt

im
e

(s
ec

)

Stage 1 Stage 2 Stage 3 Stage 4

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

Column Row

#Q Row SP Improvement Factor
Q1
Q2
Q3
Q4
Q5
Q6
Q7

76.7303 19.00066 4.03829689442592
99.72904 168.1716 0.593019363330949
77.58903 10.34288 7.50168462355436
110.9366 112.2248 0.988521365413824
92.48604 40.90545 2.26097083569539
81.20765 59.68494 1.36060536289681
79.14086 77.20672 1.02505138993445

#Q Row SP Improvement Factor
Q1
Q2
Q3
Q4
Q5
Q6
Q7

76.6102 3.91177 19.5845332992439
76.78636 4.993567 15.3770576679435
77.94926 6.415735 12.1497000262355
96.49916 5.925594 16.2851466795314
91.36615 6.307697 14.4848662938839
100.3491 8.699078 11.5356054204958
121.7369 7.833554 15.5404496269874

0

30

60

90

120

150

180

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row SP

0

30

60

90

120

150

180

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row SP

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

0

10

20

30

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

(a) Simplified queries, Simplified dataset

#Q Row UDF SP CTables
qnb1
qnb2
qnb3
qnb4
qnb5
qnb6
qnb7

229.8306 17.28415 18.14766
230.3591 19.45795 19.50107
233.8478 27.59585 24.49931
289.4975 405.8466 345.8437
274.0984 236.1602 241.8309
301.0474 413.1914 358.7857
365.2108 1418.482 1920.728

#Q Row UDF SP CTables
qnb1
qnb2
qnb3
qnb4
qnb5
qnb6
qnb7

87.67472 11.98881
87.75437 14.9901
89.62153 19.97205
182.0698 214.1835
98.44627 99.12788
201.2827 198.2128
169.0723 1890.123

#Q Row UDF SP CTables
qsnb1
qsnb2
qsnb3
qsnb4
qsnb5
qsnb6
qsnb7

86.65741 17.2841491 11.93774 1.870134
87.70732 19.4579537 14.9807 35.4904
88.98537 27.59585 19.2472 3126.133
53.31954 17.65543 18.08066 5635.36
52.6585 19.71123 18.92309 42.51629
57.41684 29.68269 26.09723 51910.05
38.16335 22.44684 23.50066 364.2986

#Q Row UDF SP CTables
qsnb1
qsnb2
qsnb3
qsnb4
qsnb5
qsnb6
qsnb7

84.98788 11.73531 1.870134
84.99943 14.9807 35.4904
86.81531 19.2472 3126.133
53.78619 17.77678 5635.36
54.15577682 18.92309 42.51629
58.82072 26.09723 51910.05
37.9362 23.50066 364.2986

#Q Row UDF SP CTables
Q1
Q5
Q6
Q10
Q12
Q14
Q19

230.1909 57.88195 57.00197
299.1871 508.0337 504.5149
232.7671 25.95971 31.02864
332.8099 358.3929 336.6745
277.4581 111.9957 122.7164
243.6229 92.36434 179.0548
237.42257 129.345887 231.6202

#Q SP1 SP2 SP3 SP4 Row1 Row2 Row3 Row4 UDF1 UDF3 SP Improvement Row Improvement SP Over Row UDF Over Row
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Average

6.049218 3.99627 3.979247 3.91177 76.610197 29.224907 28.885804 28.3293 5.761383 5.761383 1.54641450317317 2.70427504012379 7.2 4.9
6.500357 4.996701 4.993567 4.993567 76.786365 29.251457 29.235774 28.3331 6.4859846 6.4859846 1.30174621525613 2.71012504903531 5.7 4.4
8.166438 6.65735 6.415735 6.415735 77.949255 29.873844 29.661791 28.9384 9.1986176 9.1986176 1.27287645668418 2.69362360139779 4.5 3.1
115.2812 71.39452 6.026886 5.925594 96.499163 60.689942 17.773179 17.9287 135.28219 5.8851449 19.454796468212 5.38237556348034 3 3
80.61028 33.04263 6.307697 6.307697 91.366148 32.815423 17.552832 18.0519 78.720073 6.5704091 12.7796695554697 5.06129652327357 2.9 2.7
119.5952 66.07094 8.699078 8.699078 100.34913 67.094243 19.138945 19.6069 137.73047 9.89423 13.7480360153004 5.11804966848521 2.3 2
640.2426 630.0412 7.833554 7.833554 121.73695 56.357448 12.721117 12.6454 472.82738 7.4822793 81.7307954771259 9.62697542821979 1.6 1.7
139.4922 116.5999 6.322252 6.298142 91.613886 43.615323 22.138492 21.9763 120.85801 7.3254355 18.8334763844602 4.75667441057369 3.9 3.1

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Ru
nt

im
e

(s
ec

)

Stage 1 Stage 2 Stage 3 Stage 4

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Ru
nt

im
e

(s
ec

)

Stage 1 Stage 2 Stage 3 Stage 4

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

Column Row

#Q Row SP Improvement Factor
Q1
Q2
Q3
Q4
Q5
Q6
Q7

76.7303 19.00066 4.03829689442592
99.72904 168.1716 0.593019363330949
77.58903 10.34288 7.50168462355436
110.9366 112.2248 0.988521365413824
92.48604 40.90545 2.26097083569539
81.20765 59.68494 1.36060536289681
79.14086 77.20672 1.02505138993445

#Q Row SP UDF Improvement Factor
Q1
Q2
Q3
Q4
Q5
Q6
Q7

76.6102 3.91177 5.761383 19.5845332992439
76.78636 4.993567 6.485985 15.3770576679435
77.94926 6.415735 9.198618 12.1497000262355
96.49916 5.925594 135.2822 16.2851466795314
91.36615 6.307697 78.72007 14.4848662938839
100.3491 8.699078 137.7305 11.5356054204958
121.7369 7.833554 472.8274 15.5404496269874

0

30

60

90

120

150

180

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row SP

0

30

60

90

120

150

180

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row SP

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

0

10

20

30

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

0

125

250

375

500

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

(b) Simplified queries, Unmodified dataset

Standard Row Trojan Columns Trojan Columns (SP)

Lineitem
Orders
Part
customer
partsupp
supplier
nation
region

771.41172 1451.3873 365.11702086
484.01618 369.97302
100.43459 59.400493
89.459029 ***
401.02168 ***
10.144428 ***
5.5904746 ***
5.8037666 ***

0

375

750

1125

1500

Lineitem Orders Part

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

Standard Row Trojan Columns Trojan Columns (SP) Standard Row Trojan Columns Trojan Columns (O) Trojan Columns (SP) Factor Factor

Q1
Q6
Q12
Q14
Q3
Q5
Q10
Q19
Q2
Q4
Q8
Q15
Q17

76.730296 19.293983 24.208052774 230.19089 57.881948 72.62415832 3.977 3.17
77.589034 8.6532381 11.235220175 232.7671 25.959714 33.70566052 8.966 6.906
92.486038 37.331905 40.598335758 277.45811 111.99572 121.7950073 2.477 2.278
81.207649 30.788114 59.597473787 243.62295 92.364343 178.7924214 2.638 1.363
111.88261 809.38127 335.64782 2428.1438 0.138
99.729039 169.34457 299.18712 508.0337 0.589
110.93664 119.46429 332.80993 358.39288 0.929
79.140857 43.115296 237.42257 129.34589 227.3616356 1.836
0 0
110.75535 0 332.26604
97.387131 97.664365 292.16139 292.9931 0.997
80.508382 66.914039 241.52515 200.74212 1.203
0 0
0 0

0

25

50

75

100

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

0

35

70

105

140

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns (UDF)
Trojan Columns (SP)

(c) Unmodified queries, Unmodified dataset

Figure 3: Comparing TPC-H Query Runtimes of Trojan Columns with Standard Row in DBMS-X.

once sufficient number of rows which can fill a segment have been
inserted into the standard row table. At query time, the read-UDF
must also read the temporal row table for newly inserted rows.

Note that the above strategy of a trigger and function call for
every insert might be too expensive for insert intensive applica-
tions. Alternate strategies could be to periodically bulk load Trojan
Columns from the base table or to partition the base table into mul-
tiple tables and create Trojan Columns for each partition indepen-
dently. To handle updates, the update-UDF first needs to determine
the segment in which the update must be applied. Thereafter, the
update-UDF must read the affected blobs in that segment and write
them back.

4. EXPERIMENTS
We implemented Trojan Columns in DBMS-X, a closed source

commercial database system. We ran experiments to see the per-
formance improvements due to Trojan Columns in DBMS-X. We
ran all experiments on a single node with 3.3 GHz Dual Core i3
running 64-bit platform Linux openSuse 12.1 OS, 4x4 GB main
memory, 2 TB 5,400 rpm SATA hard disk. We use cold file system
caches for all our experiments and restart the database, in order to
clear database buffers, before running each query. We repeat each
measurement 3 times and report the average.

In the following, we proceed as follows. First, we evaluate Tro-
jan Columns on TPC-H queries and see the impact. Then, we study
the pros and cons of Trojan Columns using single table micro-
benchmarks. Finally, we see how far are Trojan Columns from
materialized views as well as from a column store database system.

4.1 Trojan Columns on TPC-H queries

4.1.1 Simplified queries, Simplified dataset
In this experiment, we use the simplified TPC-H queries as

proposed in the C-Store paper [12], and also used by other re-
searchers [3]. In addition, we apply the same dataset settings to
Trojan Columns as applied to C-Store in the simplified benchmark,
i.e. we (1) simplify the schema of the tables, (2) exploit prema-
terialized joins (D-tables), and (3) presort the tables to allow for
efficient sort-based grouping and compression. Figure 3(a) shows
the results for scale factor 10. We can see that Trojan Columns
improve over standard row for all queries, with improvements of
almost 5 times for Q1 and 4.4 times for Q2. Even in the worst case
Trojan Columns improve query Q7 by 70%. All this in the same
closed source commercial database DBMS-X.

4.1.2 Simplified queries, Unmodified dataset
Let us now see how the Trojan Columns behave if we apply them

over the above 7 simplified TPC-H queries without making any
dataset/schema changes, i.e. we neither use pre-materialized joins
nor simplify the table schemas or pre-sort the data. Figure 3(b)

shows the results for scale factor 10. From the table we can see that
the improvement factor of Trojan Columns over standard row goes
up to 13.3, 11.84, and 8.47 for Q1, Q2, and Q3 respectively. This
means that Trojan Columns work even better for these queries on
unmodified datasets. However, on the other hand, for queries Q4,
Q6, and Q7, Trojan Columns performs worse than standard row.
Thus, indeed the results change if we do not modify the dataset.
With unmodified datasets, we see that Trojan Columns do not work
very well for low selectivity queries (Q4, Q6, Q7). Before inves-
tigating this further in Section 4.2, let us first see the query per-
formances with unmodified dataset and unmodified TPC-H queries
below.

4.1.3 Unmodified queries, Unmodified dataset
Let us now take four non-nested, high selectivity, (and un-

modified) TPC-H benchmark queries: Q1, Q6, Q12, and Q14.
Figure 3(c) shows the query times for standard row and Trojan
Columns for these four queries on scale factor 10. We can see that
Trojan Columns outperforms standard row over all these queries.
The maximum improvement is by factor 9 for Q6, followed by fac-
tor 4 for Q1, factor 2.6 for Q14, and factor 2.5 for Q12. All this in
the same system (DBMS-X) and without touching the source code.

Next, let us see the query times for non-nested and low selec-
tivity (unmodified) TPC-H queries — Q3, Q5, Q10, and Q19. Ta-
bles 2 show the results.

Query Standard Row Trojan Columns
Q3 111.88 809.38
Q5 99.73 169.34
Q10 110.94 119.46
Q19 79.14 43.12

Table 2: TPC-H query Set 2 runtimes (in seconds).

We can see that, apart from Q19, Trojan Columns does not per-
form very well with low selectivity queries, similar as in the pre-
vious section. We also tried nested (and unmodified) TPC-H
queries. However, query nesting reduces the benefits of using Tro-
jan Columns. This is because Trojan Columns only improves the
I/O costs, which is just a fraction of the overall query costs. Apart
from I/O, the remaining query processing costs are still the same as
those for standard row.

4.2 Trojan Columns on Micro-benchmarks
In this section, we evaluate Trojan Columns on a micro-

benchmark. The idea is to understand the pros and cons of Trojan
Columns using simpler single table queries. Our micro-benchmark
consists of queries of the following form over the lineitem table.

SELECT attr_1,attr_2,..,attr_r FROM lineitem
WHERE l_partkey >= lowKey AND l_partkey < highKey;

Simplified Queries, Original Dataset

42

13x

43* tpch.org/tpch

Standard Row Trojan Columns Trojan Columns (SP)

Lineitem
Orders
Part
customer
partsupp
supplier
nation
region

771.41172 1451.3873 365.11702086
484.01618 369.97302
100.43459 59.400493
89.459029 ***
401.02168 ***
10.144428 ***
5.5904746 ***
5.8037666 ***

0

375

750

1125

1500

Lineitem Orders Part

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

Standard Row Trojan Columns Trojan Columns (SP) Standard Row Trojan Columns Trojan Columns (O) Trojan Columns (SP) Factor Factor

Q1
Q6
Q12
Q14
Q3
Q5
Q10
Q19
Q2
Q4
Q8
Q15
Q17

76.730296 19.293983 24.208052774 230.19089 57.881948 72.62415832 3.977 3.17
77.589034 8.6532381 11.235220175 232.7671 25.959714 33.70566052 8.966 6.906
92.486038 37.331905 40.598335758 277.45811 111.99572 121.7950073 2.477 2.278
81.207649 30.788114 59.597473787 243.62295 92.364343 178.7924214 2.638 1.363
111.88261 809.38127 335.64782 2428.1438 7.234
99.729039 169.34457 299.18712 508.0337 1.698
110.93664 119.46429 332.80993 358.39288 1.077
79.140857 43.115296 237.42257 129.34589 227.3616356 1.836
0 0
110.75535 0 332.26604
97.387131 97.664365 292.16139 292.9931 0.997
80.508382 66.914039 241.52515 200.74212 1.203
0 0
0 0

0

25

50

75

100

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

0

35

70

105

140

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns (UDF)
Trojan Columns (SP)

0

225

450

675

900

Q3 Q5 Q10 Q19

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

Original Queries, Original Dataset *
The “Good Queries“

43* tpch.org/tpch

Standard Row Trojan Columns Trojan Columns (SP)

Lineitem
Orders
Part
customer
partsupp
supplier
nation
region

771.41172 1451.3873 365.11702086
484.01618 369.97302
100.43459 59.400493
89.459029 ***
401.02168 ***
10.144428 ***
5.5904746 ***
5.8037666 ***

0

375

750

1125

1500

Lineitem Orders Part

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

Standard Row Trojan Columns Trojan Columns (SP) Standard Row Trojan Columns Trojan Columns (O) Trojan Columns (SP) Factor Factor

Q1
Q6
Q12
Q14
Q3
Q5
Q10
Q19
Q2
Q4
Q8
Q15
Q17

76.730296 19.293983 24.208052774 230.19089 57.881948 72.62415832 3.977 3.17
77.589034 8.6532381 11.235220175 232.7671 25.959714 33.70566052 8.966 6.906
92.486038 37.331905 40.598335758 277.45811 111.99572 121.7950073 2.477 2.278
81.207649 30.788114 59.597473787 243.62295 92.364343 178.7924214 2.638 1.363
111.88261 809.38127 335.64782 2428.1438 7.234
99.729039 169.34457 299.18712 508.0337 1.698
110.93664 119.46429 332.80993 358.39288 1.077
79.140857 43.115296 237.42257 129.34589 227.3616356 1.836
0 0
110.75535 0 332.26604
97.387131 97.664365 292.16139 292.9931 0.997
80.508382 66.914039 241.52515 200.74212 1.203
0 0
0 0

0

25

50

75

100

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

0

35

70

105

140

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns (UDF)
Trojan Columns (SP)

0

225

450

675

900

Q3 Q5 Q10 Q19

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

9x

Original Queries, Original Dataset *
The “Good Queries“

What are the trade-offs?

45* tpch.org/tpch

Standard Row Trojan Columns Trojan Columns (SP)

Lineitem
Orders
Part
customer
partsupp
supplier
nation
region

771.41172 1451.3873 365.11702086
484.01618 369.97302
100.43459 59.400493
89.459029 ***
401.02168 ***
10.144428 ***
5.5904746 ***
5.8037666 ***

0

375

750

1125

1500

Lineitem Orders Part

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

Standard Row Trojan Columns Trojan Columns (SP) Standard Row Trojan Columns Trojan Columns (O) Trojan Columns (SP) Factor Factor

Q1
Q6
Q12
Q14
Q3
Q5
Q10
Q19
Q2
Q4
Q8
Q15
Q17

76.730296 19.293983 24.208052774 230.19089 57.881948 72.62415832 3.977 3.17
77.589034 8.6532381 11.235220175 232.7671 25.959714 33.70566052 8.966 6.906
92.486038 37.331905 40.598335758 277.45811 111.99572 121.7950073 2.477 2.278
81.207649 30.788114 59.597473787 243.62295 92.364343 178.7924214 2.638 1.363
111.88261 809.38127 335.64782 2428.1438 7.234
99.729039 169.34457 299.18712 508.0337 1.698
110.93664 119.46429 332.80993 358.39288 1.077
79.140857 43.115296 237.42257 129.34589 227.3616356 1.836
0 0
110.75535 0 332.26604
97.387131 97.664365 292.16139 292.9931 0.997
80.508382 66.914039 241.52515 200.74212 1.203
0 0
0 0

0

25

50

75

100

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

0

35

70

105

140

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns (UDF)
Trojan Columns (SP)

0

225

450

675

900

Q3 Q5 Q10 Q19

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

Original Queries, Original Dataset *
The “Bad Queries“

Micro-Benchmark:  
Improvement over Row-store

46

Standard Row Trojan Columns Trojan Columns (SP)

Lineitem
Orders
Part
customer
partsupp
supplier
nation
region

771.41172 1451.3873 365.11702086
484.01618 369.97302
100.43459 59.400493
89.459029 ***
401.02168 ***
10.144428 ***
5.5904746 ***
5.8037666 ***

0

375

750

1125

1500

Lineitem Orders Part

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

Standard Row Trojan Columns Trojan Columns (SP) Standard Row Trojan Columns Trojan Columns (O) Trojan Columns (SP) Factor Factor

Q1
Q6
Q12
Q14
Q3
Q5
Q10
Q19
Q2
Q4
Q8
Q15
Q17

76.730296 19.293983 24.208052774 230.19089 57.881948 72.62415832 3.977 3.17
77.589034 8.6532381 11.235220175 232.7671 25.959714 33.70566052 8.966 6.906
92.486038 37.331905 40.598335758 277.45811 111.99572 121.7950073 2.477 2.278
81.207649 30.788114 59.597473787 243.62295 92.364343 178.7924214 2.638 1.363
111.88261 809.38127 335.64782 2428.1438 0.138
99.729039 169.34457 299.18712 508.0337 0.589
110.93664 119.46429 332.80993 358.39288 0.929
79.140857 43.115296 237.42257 129.34589 227.3616356 1.836
0 0
110.75535 0 332.26604
97.387131 97.664365 292.16139 292.9931 0.997
80.508382 66.914039 241.52515 200.74212 1.203
0 0
0 0

0

25

50

75

100

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

0

35

70

105

140

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns (UDF)
Trojan Columns (SP)

Figure 5: Unmodified TPC-H query Set 1 runtimes.

standard row over all queries in query Set 1. The maximum im-
provement is by factor 9 for Q6, followed by factor 4 for Q1, factor
2.6 for Q14, and factor 2.5 for Q12. All this in the same database
system (DBMS X) and without touching the source code.

Next, let us see the query times for TPC-H query Sets 2 and 3.
Tables 5 and 6 show the results. We can see that, apart from Q19,
Trojan Columns does not perform very well with low selectivity
queries of Set 3. This is because each call to the UDF interface has
some overhead: the lower the selectivity, the more function calls,
the higher the overhead. In principal, this overhead could be re-
moved if the database storage interface were available in LLVM
bitcode. Then the UDF query could at runtime be dynamically
recompiled together with the DBMS storage layer to remove that
boundary and bake the UDF into the kernel. This remains an inter-
esting avenue for future work.

Query Standard Row Trojan Columns
Q3 111.88 809.38
Q5 99.73 169.34
Q10 110.94 119.46
Q19 79.14 43.12

Table 5: TPC-H query Set 2 runtimes (in seconds).

Query Standard Row Trojan Columns
Q2 - -
Q4 110.76 -
Q8 97.38 97.66
Q15 80.51 66.91

Table 6: TPC-H query Set 3 runtimes (in seconds).

Trojan Columns performs similar or better than standard row for
query Set 3 (nested and high selectivity), as shown in Table 6. How-
ever, query nesting reduces the benefits of using Trojan Columns.
This is because Trojan Columns only improves the I/O costs, which
is just a fraction of the overall query costs. Apart from I/O, the re-
maining query processing costs are still the same as those for stan-
dard row. Note that standard row does not terminate for query Q2,
since we do not consider indexes in our experiments. Likewise,
Trojan Columns does not terminate for both queries Q2 and Q4.
This is because the optimizer cannot correctly estimate the costs of
UDFs. DBMS X allows for providing UDF cost estimate hints to
the optimizer. However, in the current version, the optimizer still
chooses nested loop joins instead of hash joins in the query plan —
we consider this a bug in DBMS X’s optimizer.

6.4.3 Experiment 3: read-UDF costs
The focus of Trojan Columns in this paper is to improve query

I/O cost. However, as mentioned in the previous section, I/O is just
a fraction of the total query costs. Since the database system is un-
aware of the column store inside, the query processing costs remain
the same outside the read-UDF. To better understand the impact of
Trojan Columns, let us now see the query times inside the subquery.

Q Standard
Row

Projected
View

Trojan
Columns

Standard
Row

Projected
View

Trojan
Columns

Table

Q1
Q6
Q12
Q14
Q3
Q5
Q10_o
Q10_l
Q19
Q2
Q4
Q8
Q15

76.730295686 27.42381835 19.293982609 3.9769029152 1.4213663869 230.19088706 82.27146 57.881947828 lineitem
77.589033799 21.787439044 8.6532381493 8.9664738749 2.5178365218 232.7671014 65.36232 25.959714448 lineitem

76.73051647 26.582446376 16.504629093 4.6490300412 1.610605499 230.19154941 79.747339128 49.513887278 lineitem
76.333567335 20.15226419 25.592795096 2.9826194071 0.7874194325 229.00070201 60.456792571 76.778385288 lineitem

0 0 0 5.1437565596 lineitem
0 0 0 order
0 0 0 order
0 0 0 lineitem
0 0 0

2.935810086 1.816512607 1.9092920003 8.807430258 5.449537821 5.727876001 part
15.286783871 5.1889663903 15.13420846 45.860351612 15.566899171 45.402625379 order

0 0 0 part
0 0 0 lineitem

0

25

50

75

100

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row Materialized View
Trojan Columns

Figure 6: Query processing costs of TPC-H query Set 1 for
read-UDFs. Trojan Columns versus Materialized Views.

To do so, we measure the time to compute the subquery computed
by the read-UDF using (1) Standard Row, (2) Trojan Columns, and
(3) reading a Materialized View perfectly matching the query ex-
pression.

Figure 6 shows the results. We can see that Trojan Columns is
significantly better (factor 5 on average) than standard row. Fur-
thermore, we also see that except for Q14 Trojan Columns actually
outperforms Materialized Views by a factor of up to 2.5. This is
because Trojan Columns benefits from efficient column-oriented
compression. Query Q14 has the lowest selectivity (1.25%) in
query Set 1, and therefore Trojan Columns does not perform as
well as Materialized Views. This is a very good result considering
that Materialized Views require 12GB of storage in this experiment,
whereas Trojan Columns only requires 5GB. Still, the performance
of Trojan Columns is very close to Materialized Views for Q14.
Thus, we conclude that Trojan Columns provides considerable im-
provements in terms of I/O costs.

6.5 Trojan Columns on micro-benchmarks
In this section, we evaluate Trojan Columns on two micro-

benchmarks. The idea is to see the impact of Trojan Columns on
simpler queries. These type of queries have been used in previous
studies [10, 6, 1, 2].

6.5.1 Experiment 4: Varying selections and projec-
tions over a single table.

Our first micro-benchmark consists of queries of the following
form over the lineitem table.

SELECT attr_1,attr_2,..,attr_r FROM lineitem
WHERE l_partkey >= lowKey AND l_partkey < highKey;

We vary the selectivity of the above query (by adjusting lowKey
and highKey) as well as the number of projected attributes. Figure 7
shows the improvement factor of Trojan Columns over standard
row when varying the number of referenced attributes from 1 to
16, and selectivity from 10�6 to 1.

qa16 71.60011 71.74058 72.41696 74.32579 98.73742 322.3892 2491.637
qa15 33.04871 33.11921 33.54528 35.75 59.49115 279.758 2458.112
qa13 30.5564 30.62711 30.92837 33.24232 56.71105 269.9108 2420.362
qa11 26.41372 26.24167 26.68348 29.14089 53.20931 272.8816 2602.132
qa9 23.90317 23.89993 24.38536 26.48005 49.15689 280.7952 2555.326
qa7 21.97541 21.94776 22.44053 24.47841 48.20631 275.0487 2492.356
qa5 13.94277 14.02303 14.47728 16.47504 40.9869 266.2783 2562.701
qa3 11.87712 11.26811 11.59191 13.83992 36.73721 272.6078 2580.75
qa1 8.781504 8.675566 9.206705 11.29272 34.80775 267.7441 2606.762
0 qs6 qs5 qs4 qs3 qs2 qs1 qs0

qa16 152.6776 152.6776 152.6268 152.7685 152.9608 152.7476 152.7678
qa15 153.385 152.8995 152.7691 152.6166 152.7179 152.6566 153.0205
qa13 152.8888 153.2741 152.8284 153.1116 153.1723 152.8181 152.8595
qa11 152.8289 152.6875 153.4154 152.7188 152.8187 152.7271 152.8885
qa9 152.8593 152.5857 152.4958 153.3135 152.7388 152.6467 152.7074
qa7 153.8692 152.6672 152.6966 152.5147 152.8193 152.8088 152.8496
qa5 152.769 153.4248 152.7179 152.6675 153.5663 152.748 152.7384
qa3 152.6876 152.8791 153.2124 152.6269 152.718 152.779 152.7682
qa1 153.0306 152.7988 152.9599 153.2835 152.7586 152.8184 152.7484
0 qs6 qs5 qs4 qs3 qs2 qs1 qs0

16 2.13 2.13 2.11 2.06 1.55 0.47 0.06
15 4.64 4.62 4.55 4.27 2.57 0.55 0.06
13 5.00 5.00 4.94 4.61 2.70 0.57 0.06
11 5.79 5.82 5.75 5.24 2.87 0.56 0.06
9 6.39 6.38 6.25 5.79 3.11 0.54 0.06
7 7.00 6.96 6.80 6.23 3.17 0.56 0.06
5 10.96 10.94 10.55 9.27 3.75 0.57 0.06
3 12.86 13.57 13.22 11.03 4.16 0.56 0.06
1 17.43 17.61 16.61 13.57 4.39 0.57 0.06

1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E+00

selectivity (fraction of tuples accessed)

re

fe
re

nc
ed

 a
ttr

ib
ut

es
 (r

)

Figure 7: Trojan Columns improvement factor in DBMS X.

Figure 7 shows that Trojan Columns has the maximum improve-
ment factor of over 17 (lower left region). Also, we see that for low

9

Micro-Benchmark:  
Improvement over Row-store

46

Standard Row Trojan Columns Trojan Columns (SP)

Lineitem
Orders
Part
customer
partsupp
supplier
nation
region

771.41172 1451.3873 365.11702086
484.01618 369.97302
100.43459 59.400493
89.459029 ***
401.02168 ***
10.144428 ***
5.5904746 ***
5.8037666 ***

0

375

750

1125

1500

Lineitem Orders Part

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

Standard Row Trojan Columns Trojan Columns (SP) Standard Row Trojan Columns Trojan Columns (O) Trojan Columns (SP) Factor Factor

Q1
Q6
Q12
Q14
Q3
Q5
Q10
Q19
Q2
Q4
Q8
Q15
Q17

76.730296 19.293983 24.208052774 230.19089 57.881948 72.62415832 3.977 3.17
77.589034 8.6532381 11.235220175 232.7671 25.959714 33.70566052 8.966 6.906
92.486038 37.331905 40.598335758 277.45811 111.99572 121.7950073 2.477 2.278
81.207649 30.788114 59.597473787 243.62295 92.364343 178.7924214 2.638 1.363
111.88261 809.38127 335.64782 2428.1438 0.138
99.729039 169.34457 299.18712 508.0337 0.589
110.93664 119.46429 332.80993 358.39288 0.929
79.140857 43.115296 237.42257 129.34589 227.3616356 1.836
0 0
110.75535 0 332.26604
97.387131 97.664365 292.16139 292.9931 0.997
80.508382 66.914039 241.52515 200.74212 1.203
0 0
0 0

0

25

50

75

100

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

0

35

70

105

140

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns (UDF)
Trojan Columns (SP)

Figure 5: Unmodified TPC-H query Set 1 runtimes.

standard row over all queries in query Set 1. The maximum im-
provement is by factor 9 for Q6, followed by factor 4 for Q1, factor
2.6 for Q14, and factor 2.5 for Q12. All this in the same database
system (DBMS X) and without touching the source code.

Next, let us see the query times for TPC-H query Sets 2 and 3.
Tables 5 and 6 show the results. We can see that, apart from Q19,
Trojan Columns does not perform very well with low selectivity
queries of Set 3. This is because each call to the UDF interface has
some overhead: the lower the selectivity, the more function calls,
the higher the overhead. In principal, this overhead could be re-
moved if the database storage interface were available in LLVM
bitcode. Then the UDF query could at runtime be dynamically
recompiled together with the DBMS storage layer to remove that
boundary and bake the UDF into the kernel. This remains an inter-
esting avenue for future work.

Query Standard Row Trojan Columns
Q3 111.88 809.38
Q5 99.73 169.34
Q10 110.94 119.46
Q19 79.14 43.12

Table 5: TPC-H query Set 2 runtimes (in seconds).

Query Standard Row Trojan Columns
Q2 - -
Q4 110.76 -
Q8 97.38 97.66
Q15 80.51 66.91

Table 6: TPC-H query Set 3 runtimes (in seconds).

Trojan Columns performs similar or better than standard row for
query Set 3 (nested and high selectivity), as shown in Table 6. How-
ever, query nesting reduces the benefits of using Trojan Columns.
This is because Trojan Columns only improves the I/O costs, which
is just a fraction of the overall query costs. Apart from I/O, the re-
maining query processing costs are still the same as those for stan-
dard row. Note that standard row does not terminate for query Q2,
since we do not consider indexes in our experiments. Likewise,
Trojan Columns does not terminate for both queries Q2 and Q4.
This is because the optimizer cannot correctly estimate the costs of
UDFs. DBMS X allows for providing UDF cost estimate hints to
the optimizer. However, in the current version, the optimizer still
chooses nested loop joins instead of hash joins in the query plan —
we consider this a bug in DBMS X’s optimizer.

6.4.3 Experiment 3: read-UDF costs
The focus of Trojan Columns in this paper is to improve query

I/O cost. However, as mentioned in the previous section, I/O is just
a fraction of the total query costs. Since the database system is un-
aware of the column store inside, the query processing costs remain
the same outside the read-UDF. To better understand the impact of
Trojan Columns, let us now see the query times inside the subquery.

Q Standard
Row

Projected
View

Trojan
Columns

Standard
Row

Projected
View

Trojan
Columns

Table

Q1
Q6
Q12
Q14
Q3
Q5
Q10_o
Q10_l
Q19
Q2
Q4
Q8
Q15

76.730295686 27.42381835 19.293982609 3.9769029152 1.4213663869 230.19088706 82.27146 57.881947828 lineitem
77.589033799 21.787439044 8.6532381493 8.9664738749 2.5178365218 232.7671014 65.36232 25.959714448 lineitem

76.73051647 26.582446376 16.504629093 4.6490300412 1.610605499 230.19154941 79.747339128 49.513887278 lineitem
76.333567335 20.15226419 25.592795096 2.9826194071 0.7874194325 229.00070201 60.456792571 76.778385288 lineitem

0 0 0 5.1437565596 lineitem
0 0 0 order
0 0 0 order
0 0 0 lineitem
0 0 0

2.935810086 1.816512607 1.9092920003 8.807430258 5.449537821 5.727876001 part
15.286783871 5.1889663903 15.13420846 45.860351612 15.566899171 45.402625379 order

0 0 0 part
0 0 0 lineitem

0

25

50

75

100

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row Materialized View
Trojan Columns

Figure 6: Query processing costs of TPC-H query Set 1 for
read-UDFs. Trojan Columns versus Materialized Views.

To do so, we measure the time to compute the subquery computed
by the read-UDF using (1) Standard Row, (2) Trojan Columns, and
(3) reading a Materialized View perfectly matching the query ex-
pression.

Figure 6 shows the results. We can see that Trojan Columns is
significantly better (factor 5 on average) than standard row. Fur-
thermore, we also see that except for Q14 Trojan Columns actually
outperforms Materialized Views by a factor of up to 2.5. This is
because Trojan Columns benefits from efficient column-oriented
compression. Query Q14 has the lowest selectivity (1.25%) in
query Set 1, and therefore Trojan Columns does not perform as
well as Materialized Views. This is a very good result considering
that Materialized Views require 12GB of storage in this experiment,
whereas Trojan Columns only requires 5GB. Still, the performance
of Trojan Columns is very close to Materialized Views for Q14.
Thus, we conclude that Trojan Columns provides considerable im-
provements in terms of I/O costs.

6.5 Trojan Columns on micro-benchmarks
In this section, we evaluate Trojan Columns on two micro-

benchmarks. The idea is to see the impact of Trojan Columns on
simpler queries. These type of queries have been used in previous
studies [10, 6, 1, 2].

6.5.1 Experiment 4: Varying selections and projec-
tions over a single table.

Our first micro-benchmark consists of queries of the following
form over the lineitem table.

SELECT attr_1,attr_2,..,attr_r FROM lineitem
WHERE l_partkey >= lowKey AND l_partkey < highKey;

We vary the selectivity of the above query (by adjusting lowKey
and highKey) as well as the number of projected attributes. Figure 7
shows the improvement factor of Trojan Columns over standard
row when varying the number of referenced attributes from 1 to
16, and selectivity from 10�6 to 1.

qa16 71.60011 71.74058 72.41696 74.32579 98.73742 322.3892 2491.637
qa15 33.04871 33.11921 33.54528 35.75 59.49115 279.758 2458.112
qa13 30.5564 30.62711 30.92837 33.24232 56.71105 269.9108 2420.362
qa11 26.41372 26.24167 26.68348 29.14089 53.20931 272.8816 2602.132
qa9 23.90317 23.89993 24.38536 26.48005 49.15689 280.7952 2555.326
qa7 21.97541 21.94776 22.44053 24.47841 48.20631 275.0487 2492.356
qa5 13.94277 14.02303 14.47728 16.47504 40.9869 266.2783 2562.701
qa3 11.87712 11.26811 11.59191 13.83992 36.73721 272.6078 2580.75
qa1 8.781504 8.675566 9.206705 11.29272 34.80775 267.7441 2606.762
0 qs6 qs5 qs4 qs3 qs2 qs1 qs0

qa16 152.6776 152.6776 152.6268 152.7685 152.9608 152.7476 152.7678
qa15 153.385 152.8995 152.7691 152.6166 152.7179 152.6566 153.0205
qa13 152.8888 153.2741 152.8284 153.1116 153.1723 152.8181 152.8595
qa11 152.8289 152.6875 153.4154 152.7188 152.8187 152.7271 152.8885
qa9 152.8593 152.5857 152.4958 153.3135 152.7388 152.6467 152.7074
qa7 153.8692 152.6672 152.6966 152.5147 152.8193 152.8088 152.8496
qa5 152.769 153.4248 152.7179 152.6675 153.5663 152.748 152.7384
qa3 152.6876 152.8791 153.2124 152.6269 152.718 152.779 152.7682
qa1 153.0306 152.7988 152.9599 153.2835 152.7586 152.8184 152.7484
0 qs6 qs5 qs4 qs3 qs2 qs1 qs0

16 2.13 2.13 2.11 2.06 1.55 0.47 0.06
15 4.64 4.62 4.55 4.27 2.57 0.55 0.06
13 5.00 5.00 4.94 4.61 2.70 0.57 0.06
11 5.79 5.82 5.75 5.24 2.87 0.56 0.06
9 6.39 6.38 6.25 5.79 3.11 0.54 0.06
7 7.00 6.96 6.80 6.23 3.17 0.56 0.06
5 10.96 10.94 10.55 9.27 3.75 0.57 0.06
3 12.86 13.57 13.22 11.03 4.16 0.56 0.06
1 17.43 17.61 16.61 13.57 4.39 0.57 0.06

1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E+00

selectivity (fraction of tuples accessed)

re

fe
re

nc
ed

 a
ttr

ib
ut

es
 (r

)

Figure 7: Trojan Columns improvement factor in DBMS X.

Figure 7 shows that Trojan Columns has the maximum improve-
ment factor of over 17 (lower left region). Also, we see that for low

9

Not
Affected

Micro-Benchmark:  
Improvement over Row-store

46

Standard Row Trojan Columns Trojan Columns (SP)

Lineitem
Orders
Part
customer
partsupp
supplier
nation
region

771.41172 1451.3873 365.11702086
484.01618 369.97302
100.43459 59.400493
89.459029 ***
401.02168 ***
10.144428 ***
5.5904746 ***
5.8037666 ***

0

375

750

1125

1500

Lineitem Orders Part

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

Standard Row Trojan Columns Trojan Columns (SP) Standard Row Trojan Columns Trojan Columns (O) Trojan Columns (SP) Factor Factor

Q1
Q6
Q12
Q14
Q3
Q5
Q10
Q19
Q2
Q4
Q8
Q15
Q17

76.730296 19.293983 24.208052774 230.19089 57.881948 72.62415832 3.977 3.17
77.589034 8.6532381 11.235220175 232.7671 25.959714 33.70566052 8.966 6.906
92.486038 37.331905 40.598335758 277.45811 111.99572 121.7950073 2.477 2.278
81.207649 30.788114 59.597473787 243.62295 92.364343 178.7924214 2.638 1.363
111.88261 809.38127 335.64782 2428.1438 0.138
99.729039 169.34457 299.18712 508.0337 0.589
110.93664 119.46429 332.80993 358.39288 0.929
79.140857 43.115296 237.42257 129.34589 227.3616356 1.836
0 0
110.75535 0 332.26604
97.387131 97.664365 292.16139 292.9931 0.997
80.508382 66.914039 241.52515 200.74212 1.203
0 0
0 0

0

25

50

75

100

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

0

35

70

105

140

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns (UDF)
Trojan Columns (SP)

Figure 5: Unmodified TPC-H query Set 1 runtimes.

standard row over all queries in query Set 1. The maximum im-
provement is by factor 9 for Q6, followed by factor 4 for Q1, factor
2.6 for Q14, and factor 2.5 for Q12. All this in the same database
system (DBMS X) and without touching the source code.

Next, let us see the query times for TPC-H query Sets 2 and 3.
Tables 5 and 6 show the results. We can see that, apart from Q19,
Trojan Columns does not perform very well with low selectivity
queries of Set 3. This is because each call to the UDF interface has
some overhead: the lower the selectivity, the more function calls,
the higher the overhead. In principal, this overhead could be re-
moved if the database storage interface were available in LLVM
bitcode. Then the UDF query could at runtime be dynamically
recompiled together with the DBMS storage layer to remove that
boundary and bake the UDF into the kernel. This remains an inter-
esting avenue for future work.

Query Standard Row Trojan Columns
Q3 111.88 809.38
Q5 99.73 169.34
Q10 110.94 119.46
Q19 79.14 43.12

Table 5: TPC-H query Set 2 runtimes (in seconds).

Query Standard Row Trojan Columns
Q2 - -
Q4 110.76 -
Q8 97.38 97.66
Q15 80.51 66.91

Table 6: TPC-H query Set 3 runtimes (in seconds).

Trojan Columns performs similar or better than standard row for
query Set 3 (nested and high selectivity), as shown in Table 6. How-
ever, query nesting reduces the benefits of using Trojan Columns.
This is because Trojan Columns only improves the I/O costs, which
is just a fraction of the overall query costs. Apart from I/O, the re-
maining query processing costs are still the same as those for stan-
dard row. Note that standard row does not terminate for query Q2,
since we do not consider indexes in our experiments. Likewise,
Trojan Columns does not terminate for both queries Q2 and Q4.
This is because the optimizer cannot correctly estimate the costs of
UDFs. DBMS X allows for providing UDF cost estimate hints to
the optimizer. However, in the current version, the optimizer still
chooses nested loop joins instead of hash joins in the query plan —
we consider this a bug in DBMS X’s optimizer.

6.4.3 Experiment 3: read-UDF costs
The focus of Trojan Columns in this paper is to improve query

I/O cost. However, as mentioned in the previous section, I/O is just
a fraction of the total query costs. Since the database system is un-
aware of the column store inside, the query processing costs remain
the same outside the read-UDF. To better understand the impact of
Trojan Columns, let us now see the query times inside the subquery.

Q Standard
Row

Projected
View

Trojan
Columns

Standard
Row

Projected
View

Trojan
Columns

Table

Q1
Q6
Q12
Q14
Q3
Q5
Q10_o
Q10_l
Q19
Q2
Q4
Q8
Q15

76.730295686 27.42381835 19.293982609 3.9769029152 1.4213663869 230.19088706 82.27146 57.881947828 lineitem
77.589033799 21.787439044 8.6532381493 8.9664738749 2.5178365218 232.7671014 65.36232 25.959714448 lineitem

76.73051647 26.582446376 16.504629093 4.6490300412 1.610605499 230.19154941 79.747339128 49.513887278 lineitem
76.333567335 20.15226419 25.592795096 2.9826194071 0.7874194325 229.00070201 60.456792571 76.778385288 lineitem

0 0 0 5.1437565596 lineitem
0 0 0 order
0 0 0 order
0 0 0 lineitem
0 0 0

2.935810086 1.816512607 1.9092920003 8.807430258 5.449537821 5.727876001 part
15.286783871 5.1889663903 15.13420846 45.860351612 15.566899171 45.402625379 order

0 0 0 part
0 0 0 lineitem

0

25

50

75

100

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row Materialized View
Trojan Columns

Figure 6: Query processing costs of TPC-H query Set 1 for
read-UDFs. Trojan Columns versus Materialized Views.

To do so, we measure the time to compute the subquery computed
by the read-UDF using (1) Standard Row, (2) Trojan Columns, and
(3) reading a Materialized View perfectly matching the query ex-
pression.

Figure 6 shows the results. We can see that Trojan Columns is
significantly better (factor 5 on average) than standard row. Fur-
thermore, we also see that except for Q14 Trojan Columns actually
outperforms Materialized Views by a factor of up to 2.5. This is
because Trojan Columns benefits from efficient column-oriented
compression. Query Q14 has the lowest selectivity (1.25%) in
query Set 1, and therefore Trojan Columns does not perform as
well as Materialized Views. This is a very good result considering
that Materialized Views require 12GB of storage in this experiment,
whereas Trojan Columns only requires 5GB. Still, the performance
of Trojan Columns is very close to Materialized Views for Q14.
Thus, we conclude that Trojan Columns provides considerable im-
provements in terms of I/O costs.

6.5 Trojan Columns on micro-benchmarks
In this section, we evaluate Trojan Columns on two micro-

benchmarks. The idea is to see the impact of Trojan Columns on
simpler queries. These type of queries have been used in previous
studies [10, 6, 1, 2].

6.5.1 Experiment 4: Varying selections and projec-
tions over a single table.

Our first micro-benchmark consists of queries of the following
form over the lineitem table.

SELECT attr_1,attr_2,..,attr_r FROM lineitem
WHERE l_partkey >= lowKey AND l_partkey < highKey;

We vary the selectivity of the above query (by adjusting lowKey
and highKey) as well as the number of projected attributes. Figure 7
shows the improvement factor of Trojan Columns over standard
row when varying the number of referenced attributes from 1 to
16, and selectivity from 10�6 to 1.

qa16 71.60011 71.74058 72.41696 74.32579 98.73742 322.3892 2491.637
qa15 33.04871 33.11921 33.54528 35.75 59.49115 279.758 2458.112
qa13 30.5564 30.62711 30.92837 33.24232 56.71105 269.9108 2420.362
qa11 26.41372 26.24167 26.68348 29.14089 53.20931 272.8816 2602.132
qa9 23.90317 23.89993 24.38536 26.48005 49.15689 280.7952 2555.326
qa7 21.97541 21.94776 22.44053 24.47841 48.20631 275.0487 2492.356
qa5 13.94277 14.02303 14.47728 16.47504 40.9869 266.2783 2562.701
qa3 11.87712 11.26811 11.59191 13.83992 36.73721 272.6078 2580.75
qa1 8.781504 8.675566 9.206705 11.29272 34.80775 267.7441 2606.762
0 qs6 qs5 qs4 qs3 qs2 qs1 qs0

qa16 152.6776 152.6776 152.6268 152.7685 152.9608 152.7476 152.7678
qa15 153.385 152.8995 152.7691 152.6166 152.7179 152.6566 153.0205
qa13 152.8888 153.2741 152.8284 153.1116 153.1723 152.8181 152.8595
qa11 152.8289 152.6875 153.4154 152.7188 152.8187 152.7271 152.8885
qa9 152.8593 152.5857 152.4958 153.3135 152.7388 152.6467 152.7074
qa7 153.8692 152.6672 152.6966 152.5147 152.8193 152.8088 152.8496
qa5 152.769 153.4248 152.7179 152.6675 153.5663 152.748 152.7384
qa3 152.6876 152.8791 153.2124 152.6269 152.718 152.779 152.7682
qa1 153.0306 152.7988 152.9599 153.2835 152.7586 152.8184 152.7484
0 qs6 qs5 qs4 qs3 qs2 qs1 qs0

16 2.13 2.13 2.11 2.06 1.55 0.47 0.06
15 4.64 4.62 4.55 4.27 2.57 0.55 0.06
13 5.00 5.00 4.94 4.61 2.70 0.57 0.06
11 5.79 5.82 5.75 5.24 2.87 0.56 0.06
9 6.39 6.38 6.25 5.79 3.11 0.54 0.06
7 7.00 6.96 6.80 6.23 3.17 0.56 0.06
5 10.96 10.94 10.55 9.27 3.75 0.57 0.06
3 12.86 13.57 13.22 11.03 4.16 0.56 0.06
1 17.43 17.61 16.61 13.57 4.39 0.57 0.06

1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E+00

selectivity (fraction of tuples accessed)

re

fe
re

nc
ed

 a
ttr

ib
ut

es
 (r

)

Figure 7: Trojan Columns improvement factor in DBMS X.

Figure 7 shows that Trojan Columns has the maximum improve-
ment factor of over 17 (lower left region). Also, we see that for low

9

Not
Affected

Affected

How far are we?

Four Systems
Commercial Row-store (Standard Row)

Trojan Columns in commercial Row-store

Commercial Row-store with vendor support
for column technology (DBMS-Y)

Commercial Column-store (DBMS-Z)  
(a) default TPC-H schema 
(b) tuned schema 

TPC-H Benchmark

49

Q Standard
Row

Trojan
Columns

Projected
View

Standard
Row

Projected
View

Trojan
Columns

Table

Q1
Q6
Q12
Q14
Q3
Q5
Q10_o
Q10_l
Q19
Q2
Q4
Q8
Q15

76.730295686 19.293982609 27.42381835 3.9769029152 1.4213663869 230.19088706 82.27146 57.881947828 lineitem
77.589033799 8.6532381493 21.787439044 8.9664738749 2.5178365218 232.7671014 65.36232 25.959714448 lineitem

76.73051647 16.504629093 26.582446376 4.6490300412 1.610605499 230.19154941 79.747339128 49.513887278 lineitem
76.333567335 25.592795096 20.15226419 2.9826194071 0.7874194325 229.00070201 60.456792571 76.778385288 lineitem

0 0 0 5.1437565596 lineitem
0 0 0 order
0 0 0 order
0 0 0 lineitem
0 0 0

2.935810086 1.9092920003 1.816512607 8.807430258 5.449537821 5.727876001 part
15.286783871 15.13420846 5.1889663903 45.860351612 15.566899171 45.402625379 order

0 0 0 part
0 0 0 lineitem

0

25

50

75

100

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row Trojan Columns
Materialized View

(a) Trojan Columns versus Materialized Views

ROW TROJAN SQL VECTORWISE VECTORWISE2 VERTICA (other machine) Factor
Q1

Q6

Q12

Q14

76.730296 19.293983 22.0 31.276143 6.0 41.7 1.1 3.2
77.589034 8.6532381 16.0 25.845965 4.6 11.4 1.8 1.9
92.486038 37.331905 33.0 29.785149 4.3 15.3 0.9 8.7
81.207649 30.788114 28.0 22.291128 5.0 13.9 0.9 6.2

0

25

50

75

100

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row Trojan Columns
DBMS-Y DBMS-Z (a)
DBMS-Z (b)

(b) Trojan Columns versus Column Store

Figure 4: Comparing TPC-H Query Runtimes with Materialized Views and Column Stores.

We vary the selectivity of the above query (by adjusting lowKey
and highKey) as well as the number of projected attributes. Fig-
ure 5 shows the improvement factor of Trojan Columns over stan-
dard row when varying the number of referenced attributes from 1
to 16, and selectivity from 10�6 to 1. From the figure, we see that
Trojan Columns has a maximum improvement factor of over 17
(lower left region). Also, we see that for low selectivities (� 0.1)
Trojan Columns performs worse than standard row. To investigate
this, we break down the query runtime into data access, data pro-
cessing (decompression, operator evaluation etc.), and data output
costs. Our results showed that data output costs dominate (as high
as 60 � 80%) the query runtime for low selectivity queries. This
is because each call to the UDF interface has some overhead: the
lower the selectivity, the more function calls, the higher the over-
head. These function call overheads overshadow the performance
improvements of Trojan Columns for low selectivities. In princi-
pal, this overhead could be removed if the database storage inter-
face were available in LLVM bitcode. Then the UDF query could at
runtime be dynamically recompiled together with the DBMS stor-
age layer to remove that boundary and bake the UDF into the ker-
nel. This remains an interesting avenue for future work.

However, overall even for medium sized selectivites the perfor-
mance gains of Trojan Columns are tremendous.

qa16 71.60011 71.74058 72.41696 74.32579 98.73742 322.3892 2491.637
qa15 33.04871 33.11921 33.54528 35.75 59.49115 279.758 2458.112
qa13 30.5564 30.62711 30.92837 33.24232 56.71105 269.9108 2420.362
qa11 26.41372 26.24167 26.68348 29.14089 53.20931 272.8816 2602.132
qa9 23.90317 23.89993 24.38536 26.48005 49.15689 280.7952 2555.326
qa7 21.97541 21.94776 22.44053 24.47841 48.20631 275.0487 2492.356
qa5 13.94277 14.02303 14.47728 16.47504 40.9869 266.2783 2562.701
qa3 11.87712 11.26811 11.59191 13.83992 36.73721 272.6078 2580.75
qa1 8.781504 8.675566 9.206705 11.29272 34.80775 267.7441 2606.762
0 qs6 qs5 qs4 qs3 qs2 qs1 qs0

qa16 152.6776 152.6776 152.6268 152.7685 152.9608 152.7476 152.7678
qa15 153.385 152.8995 152.7691 152.6166 152.7179 152.6566 153.0205
qa13 152.8888 153.2741 152.8284 153.1116 153.1723 152.8181 152.8595
qa11 152.8289 152.6875 153.4154 152.7188 152.8187 152.7271 152.8885
qa9 152.8593 152.5857 152.4958 153.3135 152.7388 152.6467 152.7074
qa7 153.8692 152.6672 152.6966 152.5147 152.8193 152.8088 152.8496
qa5 152.769 153.4248 152.7179 152.6675 153.5663 152.748 152.7384
qa3 152.6876 152.8791 153.2124 152.6269 152.718 152.779 152.7682
qa1 153.0306 152.7988 152.9599 153.2835 152.7586 152.8184 152.7484
0 qs6 qs5 qs4 qs3 qs2 qs1 qs0

16 2.13 2.13 2.11 2.06 1.55 0.47 0.06
15 4.64 4.62 4.55 4.27 2.57 0.55 0.06
13 5.00 5.00 4.94 4.61 2.70 0.57 0.06
11 5.79 5.82 5.75 5.24 2.87 0.56 0.06
9 6.39 6.38 6.25 5.79 3.11 0.54 0.06
7 7.00 6.96 6.80 6.23 3.17 0.56 0.06
5 10.96 10.94 10.55 9.27 3.75 0.57 0.06
3 12.86 13.57 13.22 11.03 4.16 0.56 0.06
1 17.43 17.61 16.61 13.57 4.39 0.57 0.06

1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E+00

selectivity (fraction of tuples accessed)

re

fe
re

nc
ed

 a
ttr

ib
ut

es
 (r

)

Figure 5: Trojan Columns improvement factor in DBMS X.

4.3 How far are Trojan Columns?

4.3.1 Comparison with Materialized Views
The focus of Trojan Columns in this paper is to improve query

I/O cost. However, as mentioned before, I/O is just a fraction of the
total query costs. Since the database system is unaware of the col-
umn store inside, the query processing costs remain the same out-
side the UDF. To better understand the impact of Trojan Columns,
let us now see the query times inside the subquery. To do so, we
measure just the time to compute the subquery computed by the
read-UDF using (1) Standard Row, (2) Trojan Columns, and (3) a

Materialized View perfectly matching the query expression.
Figure 4(a) shows the results. We can see that Trojan Columns

is significantly better (factor 5 on average) than standard row. Fur-
thermore, we also see that except for Q14 Trojan Columns actually
outperforms Materialized Views by a factor of up to 2.5. This is
because Trojan Columns benefits from efficient column-oriented
compression. Query Q14 has the lowest selectivity (1.25%) among
these four queries, and therefore Trojan Columns does not perform
as well as Materialized Views. This is a very good result consider-
ing that Materialized Views require ⇠12GB of storage in this ex-
periment, whereas Trojan Columns only requires ⇠5GB. Still, the
performance of Trojan Columns is very close to Materialized Views
for Q14. We conclude that Trojan Columns provides considerable
improvements in terms of I/O costs. Furthermore, we see Trojan
Columns as a method that improves over Materialised Views, i.e. a
better way of storing and accessing query subexpressions.

4.3.2 Comparison with Column Stores
Trojan Columns allows users to use their existing row-oriented

database system for efficiently supporting analytical workloads as
well, i.e. bridge the huge gap between row stores and column
stores. Thus, it would be interesting to see how far are Trojan
Columns from a database system with column store technology as
well as from a full blown column store. To do so, we run unmod-
ified TPC-H queries on Trojan Columns as well as on two other
systems: (i) a top notch commercial row-oriented database sys-
tem DBMS-Y, with vendor support for column store technology,
and (ii) a top notch commercial column-oriented database system
DBMS-Z.

Figure 4(b) shows the results. We can see that while Trojan
Columns are slower than DBMS-Y for Q12 and Q14 (by around
10%), Trojan Columns are in fact faster than DBMS-Y for Q1

and Q6 (by 10% and 80% respectively). This is even though
DBMS-Y is deeply modified in order to support column function-
ality, whereas Trojan Columns does not even have access to the
source code. The better performance of Trojan Columns for Q1

and Q6 is because Trojan Columns push down even the aggrega-
tion operator to the data access layer. DBMS-Z (a) in Figure 4(b)
denotes DBMS-Z with the same (default) table schemas as Tro-
jan Columns. From the figure, we see that Trojan Columns are
quite competitive to a full blown column-oriented database system
and can achieve comparable query performance in the same row-
oriented database system. On the other hand, Trojan Columns are
still far off from DBMS-Z, if the table schemas in DBMS-Z are op-
timized to achieve the best possible compression ratios — denoted
as DBMS-Z (b) in Figure 4(b). Trojan Columns are up to 3.2 times
slower than DBMS-Z (b) for single table queries and as high as 8.7
times slower for multi-table queries.

Overall, we see that Trojan Columns bridge the huge gap be-
tween the performances of row store and column store. In fact,

TPC-H Benchmark

49

Q Standard
Row

Trojan
Columns

Projected
View

Standard
Row

Projected
View

Trojan
Columns

Table

Q1
Q6
Q12
Q14
Q3
Q5
Q10_o
Q10_l
Q19
Q2
Q4
Q8
Q15

76.730295686 19.293982609 27.42381835 3.9769029152 1.4213663869 230.19088706 82.27146 57.881947828 lineitem
77.589033799 8.6532381493 21.787439044 8.9664738749 2.5178365218 232.7671014 65.36232 25.959714448 lineitem

76.73051647 16.504629093 26.582446376 4.6490300412 1.610605499 230.19154941 79.747339128 49.513887278 lineitem
76.333567335 25.592795096 20.15226419 2.9826194071 0.7874194325 229.00070201 60.456792571 76.778385288 lineitem

0 0 0 5.1437565596 lineitem
0 0 0 order
0 0 0 order
0 0 0 lineitem
0 0 0

2.935810086 1.9092920003 1.816512607 8.807430258 5.449537821 5.727876001 part
15.286783871 15.13420846 5.1889663903 45.860351612 15.566899171 45.402625379 order

0 0 0 part
0 0 0 lineitem

0

25

50

75

100

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row Trojan Columns
Materialized View

(a) Trojan Columns versus Materialized Views

ROW TROJAN SQL VECTORWISE VECTORWISE2 VERTICA (other machine) Factor
Q1

Q6

Q12

Q14

76.730296 19.293983 22.0 31.276143 6.0 41.7 1.1 3.2
77.589034 8.6532381 16.0 25.845965 4.6 11.4 1.8 1.9
92.486038 37.331905 33.0 29.785149 4.3 15.3 0.9 8.7
81.207649 30.788114 28.0 22.291128 5.0 13.9 0.9 6.2

0

25

50

75

100

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row Trojan Columns
DBMS-Y DBMS-Z (a)
DBMS-Z (b)

(b) Trojan Columns versus Column Store

Figure 4: Comparing TPC-H Query Runtimes with Materialized Views and Column Stores.

We vary the selectivity of the above query (by adjusting lowKey
and highKey) as well as the number of projected attributes. Fig-
ure 5 shows the improvement factor of Trojan Columns over stan-
dard row when varying the number of referenced attributes from 1
to 16, and selectivity from 10�6 to 1. From the figure, we see that
Trojan Columns has a maximum improvement factor of over 17
(lower left region). Also, we see that for low selectivities (� 0.1)
Trojan Columns performs worse than standard row. To investigate
this, we break down the query runtime into data access, data pro-
cessing (decompression, operator evaluation etc.), and data output
costs. Our results showed that data output costs dominate (as high
as 60 � 80%) the query runtime for low selectivity queries. This
is because each call to the UDF interface has some overhead: the
lower the selectivity, the more function calls, the higher the over-
head. These function call overheads overshadow the performance
improvements of Trojan Columns for low selectivities. In princi-
pal, this overhead could be removed if the database storage inter-
face were available in LLVM bitcode. Then the UDF query could at
runtime be dynamically recompiled together with the DBMS stor-
age layer to remove that boundary and bake the UDF into the ker-
nel. This remains an interesting avenue for future work.

However, overall even for medium sized selectivites the perfor-
mance gains of Trojan Columns are tremendous.

qa16 71.60011 71.74058 72.41696 74.32579 98.73742 322.3892 2491.637
qa15 33.04871 33.11921 33.54528 35.75 59.49115 279.758 2458.112
qa13 30.5564 30.62711 30.92837 33.24232 56.71105 269.9108 2420.362
qa11 26.41372 26.24167 26.68348 29.14089 53.20931 272.8816 2602.132
qa9 23.90317 23.89993 24.38536 26.48005 49.15689 280.7952 2555.326
qa7 21.97541 21.94776 22.44053 24.47841 48.20631 275.0487 2492.356
qa5 13.94277 14.02303 14.47728 16.47504 40.9869 266.2783 2562.701
qa3 11.87712 11.26811 11.59191 13.83992 36.73721 272.6078 2580.75
qa1 8.781504 8.675566 9.206705 11.29272 34.80775 267.7441 2606.762
0 qs6 qs5 qs4 qs3 qs2 qs1 qs0

qa16 152.6776 152.6776 152.6268 152.7685 152.9608 152.7476 152.7678
qa15 153.385 152.8995 152.7691 152.6166 152.7179 152.6566 153.0205
qa13 152.8888 153.2741 152.8284 153.1116 153.1723 152.8181 152.8595
qa11 152.8289 152.6875 153.4154 152.7188 152.8187 152.7271 152.8885
qa9 152.8593 152.5857 152.4958 153.3135 152.7388 152.6467 152.7074
qa7 153.8692 152.6672 152.6966 152.5147 152.8193 152.8088 152.8496
qa5 152.769 153.4248 152.7179 152.6675 153.5663 152.748 152.7384
qa3 152.6876 152.8791 153.2124 152.6269 152.718 152.779 152.7682
qa1 153.0306 152.7988 152.9599 153.2835 152.7586 152.8184 152.7484
0 qs6 qs5 qs4 qs3 qs2 qs1 qs0

16 2.13 2.13 2.11 2.06 1.55 0.47 0.06
15 4.64 4.62 4.55 4.27 2.57 0.55 0.06
13 5.00 5.00 4.94 4.61 2.70 0.57 0.06
11 5.79 5.82 5.75 5.24 2.87 0.56 0.06
9 6.39 6.38 6.25 5.79 3.11 0.54 0.06
7 7.00 6.96 6.80 6.23 3.17 0.56 0.06
5 10.96 10.94 10.55 9.27 3.75 0.57 0.06
3 12.86 13.57 13.22 11.03 4.16 0.56 0.06
1 17.43 17.61 16.61 13.57 4.39 0.57 0.06

1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E+00

selectivity (fraction of tuples accessed)

re

fe
re

nc
ed

 a
ttr

ib
ut

es
 (r

)

Figure 5: Trojan Columns improvement factor in DBMS X.

4.3 How far are Trojan Columns?

4.3.1 Comparison with Materialized Views
The focus of Trojan Columns in this paper is to improve query

I/O cost. However, as mentioned before, I/O is just a fraction of the
total query costs. Since the database system is unaware of the col-
umn store inside, the query processing costs remain the same out-
side the UDF. To better understand the impact of Trojan Columns,
let us now see the query times inside the subquery. To do so, we
measure just the time to compute the subquery computed by the
read-UDF using (1) Standard Row, (2) Trojan Columns, and (3) a

Materialized View perfectly matching the query expression.
Figure 4(a) shows the results. We can see that Trojan Columns

is significantly better (factor 5 on average) than standard row. Fur-
thermore, we also see that except for Q14 Trojan Columns actually
outperforms Materialized Views by a factor of up to 2.5. This is
because Trojan Columns benefits from efficient column-oriented
compression. Query Q14 has the lowest selectivity (1.25%) among
these four queries, and therefore Trojan Columns does not perform
as well as Materialized Views. This is a very good result consider-
ing that Materialized Views require ⇠12GB of storage in this ex-
periment, whereas Trojan Columns only requires ⇠5GB. Still, the
performance of Trojan Columns is very close to Materialized Views
for Q14. We conclude that Trojan Columns provides considerable
improvements in terms of I/O costs. Furthermore, we see Trojan
Columns as a method that improves over Materialised Views, i.e. a
better way of storing and accessing query subexpressions.

4.3.2 Comparison with Column Stores
Trojan Columns allows users to use their existing row-oriented

database system for efficiently supporting analytical workloads as
well, i.e. bridge the huge gap between row stores and column
stores. Thus, it would be interesting to see how far are Trojan
Columns from a database system with column store technology as
well as from a full blown column store. To do so, we run unmod-
ified TPC-H queries on Trojan Columns as well as on two other
systems: (i) a top notch commercial row-oriented database sys-
tem DBMS-Y, with vendor support for column store technology,
and (ii) a top notch commercial column-oriented database system
DBMS-Z.

Figure 4(b) shows the results. We can see that while Trojan
Columns are slower than DBMS-Y for Q12 and Q14 (by around
10%), Trojan Columns are in fact faster than DBMS-Y for Q1

and Q6 (by 10% and 80% respectively). This is even though
DBMS-Y is deeply modified in order to support column function-
ality, whereas Trojan Columns does not even have access to the
source code. The better performance of Trojan Columns for Q1

and Q6 is because Trojan Columns push down even the aggrega-
tion operator to the data access layer. DBMS-Z (a) in Figure 4(b)
denotes DBMS-Z with the same (default) table schemas as Tro-
jan Columns. From the figure, we see that Trojan Columns are
quite competitive to a full blown column-oriented database system
and can achieve comparable query performance in the same row-
oriented database system. On the other hand, Trojan Columns are
still far off from DBMS-Z, if the table schemas in DBMS-Z are op-
timized to achieve the best possible compression ratios — denoted
as DBMS-Z (b) in Figure 4(b). Trojan Columns are up to 3.2 times
slower than DBMS-Z (b) for single table queries and as high as 8.7
times slower for multi-table queries.

Overall, we see that Trojan Columns bridge the huge gap be-
tween the performances of row store and column store. In fact,

Comparable or Better!

TPC-H Benchmark

49

Q Standard
Row

Trojan
Columns

Projected
View

Standard
Row

Projected
View

Trojan
Columns

Table

Q1
Q6
Q12
Q14
Q3
Q5
Q10_o
Q10_l
Q19
Q2
Q4
Q8
Q15

76.730295686 19.293982609 27.42381835 3.9769029152 1.4213663869 230.19088706 82.27146 57.881947828 lineitem
77.589033799 8.6532381493 21.787439044 8.9664738749 2.5178365218 232.7671014 65.36232 25.959714448 lineitem

76.73051647 16.504629093 26.582446376 4.6490300412 1.610605499 230.19154941 79.747339128 49.513887278 lineitem
76.333567335 25.592795096 20.15226419 2.9826194071 0.7874194325 229.00070201 60.456792571 76.778385288 lineitem

0 0 0 5.1437565596 lineitem
0 0 0 order
0 0 0 order
0 0 0 lineitem
0 0 0

2.935810086 1.9092920003 1.816512607 8.807430258 5.449537821 5.727876001 part
15.286783871 15.13420846 5.1889663903 45.860351612 15.566899171 45.402625379 order

0 0 0 part
0 0 0 lineitem

0

25

50

75

100

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row Trojan Columns
Materialized View

(a) Trojan Columns versus Materialized Views

ROW TROJAN SQL VECTORWISE VECTORWISE2 VERTICA (other machine) Factor
Q1

Q6

Q12

Q14

76.730296 19.293983 22.0 31.276143 6.0 41.7 1.1 3.2
77.589034 8.6532381 16.0 25.845965 4.6 11.4 1.8 1.9
92.486038 37.331905 33.0 29.785149 4.3 15.3 0.9 8.7
81.207649 30.788114 28.0 22.291128 5.0 13.9 0.9 6.2

0

25

50

75

100

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row Trojan Columns
DBMS-Y DBMS-Z (a)
DBMS-Z (b)

(b) Trojan Columns versus Column Store

Figure 4: Comparing TPC-H Query Runtimes with Materialized Views and Column Stores.

We vary the selectivity of the above query (by adjusting lowKey
and highKey) as well as the number of projected attributes. Fig-
ure 5 shows the improvement factor of Trojan Columns over stan-
dard row when varying the number of referenced attributes from 1
to 16, and selectivity from 10�6 to 1. From the figure, we see that
Trojan Columns has a maximum improvement factor of over 17
(lower left region). Also, we see that for low selectivities (� 0.1)
Trojan Columns performs worse than standard row. To investigate
this, we break down the query runtime into data access, data pro-
cessing (decompression, operator evaluation etc.), and data output
costs. Our results showed that data output costs dominate (as high
as 60 � 80%) the query runtime for low selectivity queries. This
is because each call to the UDF interface has some overhead: the
lower the selectivity, the more function calls, the higher the over-
head. These function call overheads overshadow the performance
improvements of Trojan Columns for low selectivities. In princi-
pal, this overhead could be removed if the database storage inter-
face were available in LLVM bitcode. Then the UDF query could at
runtime be dynamically recompiled together with the DBMS stor-
age layer to remove that boundary and bake the UDF into the ker-
nel. This remains an interesting avenue for future work.

However, overall even for medium sized selectivites the perfor-
mance gains of Trojan Columns are tremendous.

qa16 71.60011 71.74058 72.41696 74.32579 98.73742 322.3892 2491.637
qa15 33.04871 33.11921 33.54528 35.75 59.49115 279.758 2458.112
qa13 30.5564 30.62711 30.92837 33.24232 56.71105 269.9108 2420.362
qa11 26.41372 26.24167 26.68348 29.14089 53.20931 272.8816 2602.132
qa9 23.90317 23.89993 24.38536 26.48005 49.15689 280.7952 2555.326
qa7 21.97541 21.94776 22.44053 24.47841 48.20631 275.0487 2492.356
qa5 13.94277 14.02303 14.47728 16.47504 40.9869 266.2783 2562.701
qa3 11.87712 11.26811 11.59191 13.83992 36.73721 272.6078 2580.75
qa1 8.781504 8.675566 9.206705 11.29272 34.80775 267.7441 2606.762
0 qs6 qs5 qs4 qs3 qs2 qs1 qs0

qa16 152.6776 152.6776 152.6268 152.7685 152.9608 152.7476 152.7678
qa15 153.385 152.8995 152.7691 152.6166 152.7179 152.6566 153.0205
qa13 152.8888 153.2741 152.8284 153.1116 153.1723 152.8181 152.8595
qa11 152.8289 152.6875 153.4154 152.7188 152.8187 152.7271 152.8885
qa9 152.8593 152.5857 152.4958 153.3135 152.7388 152.6467 152.7074
qa7 153.8692 152.6672 152.6966 152.5147 152.8193 152.8088 152.8496
qa5 152.769 153.4248 152.7179 152.6675 153.5663 152.748 152.7384
qa3 152.6876 152.8791 153.2124 152.6269 152.718 152.779 152.7682
qa1 153.0306 152.7988 152.9599 153.2835 152.7586 152.8184 152.7484
0 qs6 qs5 qs4 qs3 qs2 qs1 qs0

16 2.13 2.13 2.11 2.06 1.55 0.47 0.06
15 4.64 4.62 4.55 4.27 2.57 0.55 0.06
13 5.00 5.00 4.94 4.61 2.70 0.57 0.06
11 5.79 5.82 5.75 5.24 2.87 0.56 0.06
9 6.39 6.38 6.25 5.79 3.11 0.54 0.06
7 7.00 6.96 6.80 6.23 3.17 0.56 0.06
5 10.96 10.94 10.55 9.27 3.75 0.57 0.06
3 12.86 13.57 13.22 11.03 4.16 0.56 0.06
1 17.43 17.61 16.61 13.57 4.39 0.57 0.06

1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E+00

selectivity (fraction of tuples accessed)

re

fe
re

nc
ed

 a
ttr

ib
ut

es
 (r

)

Figure 5: Trojan Columns improvement factor in DBMS X.

4.3 How far are Trojan Columns?

4.3.1 Comparison with Materialized Views
The focus of Trojan Columns in this paper is to improve query

I/O cost. However, as mentioned before, I/O is just a fraction of the
total query costs. Since the database system is unaware of the col-
umn store inside, the query processing costs remain the same out-
side the UDF. To better understand the impact of Trojan Columns,
let us now see the query times inside the subquery. To do so, we
measure just the time to compute the subquery computed by the
read-UDF using (1) Standard Row, (2) Trojan Columns, and (3) a

Materialized View perfectly matching the query expression.
Figure 4(a) shows the results. We can see that Trojan Columns

is significantly better (factor 5 on average) than standard row. Fur-
thermore, we also see that except for Q14 Trojan Columns actually
outperforms Materialized Views by a factor of up to 2.5. This is
because Trojan Columns benefits from efficient column-oriented
compression. Query Q14 has the lowest selectivity (1.25%) among
these four queries, and therefore Trojan Columns does not perform
as well as Materialized Views. This is a very good result consider-
ing that Materialized Views require ⇠12GB of storage in this ex-
periment, whereas Trojan Columns only requires ⇠5GB. Still, the
performance of Trojan Columns is very close to Materialized Views
for Q14. We conclude that Trojan Columns provides considerable
improvements in terms of I/O costs. Furthermore, we see Trojan
Columns as a method that improves over Materialised Views, i.e. a
better way of storing and accessing query subexpressions.

4.3.2 Comparison with Column Stores
Trojan Columns allows users to use their existing row-oriented

database system for efficiently supporting analytical workloads as
well, i.e. bridge the huge gap between row stores and column
stores. Thus, it would be interesting to see how far are Trojan
Columns from a database system with column store technology as
well as from a full blown column store. To do so, we run unmod-
ified TPC-H queries on Trojan Columns as well as on two other
systems: (i) a top notch commercial row-oriented database sys-
tem DBMS-Y, with vendor support for column store technology,
and (ii) a top notch commercial column-oriented database system
DBMS-Z.

Figure 4(b) shows the results. We can see that while Trojan
Columns are slower than DBMS-Y for Q12 and Q14 (by around
10%), Trojan Columns are in fact faster than DBMS-Y for Q1

and Q6 (by 10% and 80% respectively). This is even though
DBMS-Y is deeply modified in order to support column function-
ality, whereas Trojan Columns does not even have access to the
source code. The better performance of Trojan Columns for Q1

and Q6 is because Trojan Columns push down even the aggrega-
tion operator to the data access layer. DBMS-Z (a) in Figure 4(b)
denotes DBMS-Z with the same (default) table schemas as Tro-
jan Columns. From the figure, we see that Trojan Columns are
quite competitive to a full blown column-oriented database system
and can achieve comparable query performance in the same row-
oriented database system. On the other hand, Trojan Columns are
still far off from DBMS-Z, if the table schemas in DBMS-Z are op-
timized to achieve the best possible compression ratios — denoted
as DBMS-Z (b) in Figure 4(b). Trojan Columns are up to 3.2 times
slower than DBMS-Z (b) for single table queries and as high as 8.7
times slower for multi-table queries.

Overall, we see that Trojan Columns bridge the huge gap be-
tween the performances of row store and column store. In fact,

Comparable or Better!

Still to catch-up!

What about query
optimization?

Rules out query optimization?

Rules out query optimization?

NO!

Rules out query optimization?

NO!

QO with aggregate UDFs [SIGMOD’06]

Manimal [WebDB’10]

HadoopToSQL [EuroSys’10]

Black box QO [VLDB’12]

“

The UDF Business Model

Not just for application-specific code

Integrate core database functionality after the fact

Column layouts are just one example!

Meet customer demands quickly

Provide quick feedback before new product release

UDFs

performance
slow fastgood-enough

Summary

row-store

performance
slow fastgood-enough

native
column-store

Summary

row-store

performance
slow fastgood-enough

Trojan Columns

native
column-store

Summary

row-store

